UNE RÉVOLUTION TECHNOLOGIQUE : LE RIZ PLUVIAL DE QUALITÉ EN ZONE TROPICALE HUMIDE - DES PERFORMANCES REPRODUCTIBLES SUR LA VOIE DE CELLES DU BLÉ EN RÉGION TEMPERÉE

Lucien SÉGUY⁽¹⁾, Serge BOUZINAC⁽¹⁾, James TAILLEBOIS⁽¹⁾, Ayrton TRENTINI⁽²⁾

RESUMÉ

La zone tropicale humide représente au Brésil, un vaste réservoir de terres encore inexploitées, en particulier les savanes de sols acides des fronts pionniers de l'Ouest et du Nord, qui peuvent être des régions de production privilégiées, où la riziculture pluviale peut permettre de fixer une agriculture durable, à partir de systèmes de culture diversifiés, stables et lucratifs.

Les travaux de recherche conduits entre 1978 et 1995, par le CIRAD-CA et ses partenaires brésiliens de la recherche et du développement, montrent les cheminements qui ont construit la progression de la riziculture pluviale grâce à une approche synthétique intégrant l'amélioration variétale dans les

systèmes de culture, pour, avec et chez les agriculteurs.

Productivité élevée, stable, et qualité de grain supérieure, type long fin, sont les objectifs principaux qui sont pour suivis pour valoriser le riz pluvial et le stabiliser. Des variétés, à phénotype proche de celui des irriguées sont créées. Elles répondent aux objectifs fixés et permettent de produire et reproduire, dans les meilleurs systèmes, en grande culture, plus de 5 000 Kg/ha, avec des maximums de rendements à plus de 6 000 Kg/ha; les coûts de production sont compris entre 500 et 600 US\$/ha, soit moins de la moitié de ceux du riz irrigué de même qualité.

Aussi bien en écologie de savanes (cerrados) que de forêts, modes de gestion des sols et des cultures, phosphatage de fond périodique au thermophosphate, et variétés à haut potentiel de très belle qualité de grains, sont les composantes qui garantissent la stabilisation de la culture de soja à haute productivité et un grand avenir alimentaire à la riziculture pluviale au Brésil et en Amérique Latine. Cette expérience

mérite d'être répétée dans les zones tropicales humides d'Asie et d'Afrique.

Mots clés additionnels: Zones pédoclimatiques favorisées, modes de gestion des sols, systèmes de culture, sélection, économie de systèmes, variétés de riz pluvial à haut potentiel, thermophosphate, qualité de grains.

SUMMARY

A TECHNOLOGICAL REVOLUTION : HIGH GRAIN QUALITY UPLAND RICE IN THE HUMID TROPICS - CONSISTENT PERFORMANCES APPROACHING THOSE OF TEMPERATE CLIMATE WHEAT

The humid tropics represent a vast and inexplored land reserve in Brazil, especially the acid soil savannahs in the frontier areas of West and North West Brazil, which could be privileged regions, where upland rice could allow the fixation of sustainable agriculture based on diversified, stable and profitable cropping systems.

Research carried out between 1978 and 1995 by CIRAD-CA and their Brazilian partners in research and extension, shows the paths contributing to the progress in upland rice technology due to an on-farm system

approach, integrating varietal improvement with cropping systems for farmers.

High and stable yield coupled with superior long-grain quality are the objectives pursued to raise the returns of upland rice and stabilize the crop. Phenotypes close to irrigated varieties were created. These respond to the goals set out and allow consistent production under top commercial management of over 5.000 Kg/ha with maxima of over 6.000 Kg/ha; production costs vary between US\$ 500 and US\$ 600/h, less than half those of comparable quality irrigated rice.

Both in the savannah and forest ecological zones, soil and crop management, periodic applications of thermophosphate, and high-yielding, high grain-quality varieties components guarantee the stability of high soybean yields and a big future in food security for upland rice culture in Brazil and the rest of Latin America.

This experience merits testing in the humid tropics of Africa and Asia.

Key words and phrases: pedoclimatic zones, soil management, cropping systems, varietal improvement, systems economy, high yielding upland rice varieties, thermophosphate, grain quality.

L. SÉGUY, S. BOUZINAC et J. TAILLEBOIS sont agronomes du CIRAD-CA basés au Brésil(*)

A. TRENTINI est agronome de la COOPERLUCAS - Lucas do Rio Verde - Mato Grosso

^(*) CP 504 - a/c Tasso de Castro - Agência central -74001-970 - Goiânia - Goiás - BRESIL

Tel. et Fax 62.2481591

I - INTRODUCTION - Le riz pluvial, une culture decisive pour l'enjeu alimentaire de l'an 2 000

Sur une surface totale d'environ 145 millions d'hectares cultivés en riz dans le monde, environ 20 millions d'hectares sont occupés par le riz pluvial strict. En Amerique Latine, sur un total de 8,2 millions d'hectares, 5,9 sont cultivés en riz pluvial, soit 78% de la surface totale [IRAT, 1984 (5), Gonzales, L. A. et al., 1985 (3)].

Le Brésil, à lui seul, produit environ 10 millions de tonnes/ an, dont 40% en conditions pluviales; avec une croissance démographique de 2% an au Brésil, la production de riz devrait atteindre vers l'an 2000, environ 15 millions de tonnes de paddy pour satisfaire une consommation moyenne de 43 Kg/habitant/an, soit une augmentation de50% disponibilités par rapport à la moyenne actuelle ; dans une hypothèse fort probable d'augmentation de consommation de riz par habitant, la production du Brésil devra doubler pour maintenir le niveau d'auto approvisionnement actuel [(Mendez, P.D.V., 1994 (8)]

Les surfaces rizicoles des états du Sud ne peuvent plus progresser que de 20 à 30% par rapport au niveau actuel; de même, l'accroissement de nouvelles terres défrichées. traditionnellement cultivées en riz, se restreint de plus en plus, l'accroissement des disponibilités en riz pour s'ajuster à la demande interne prévisible ne pourra donc venir que de l'amélioration des rendements moyens et des importations (Mercosul). Si la productivité moyenne du riz irrigué est d'environ 4,3 t/ha dans les états du Sud (Rio Grande do Sul, Santa Catarina), elle oscille, par contre, pour le riz pluvial, entre 1,2 et 1,6 t/ha, soit des rendements moyens très bas, facilement améliorables [Séguy

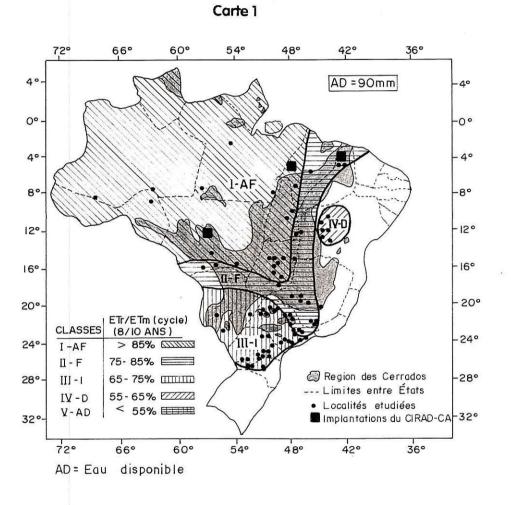
Bouzinac S. et al., 1982 (14), 1993 (27), 1994 (28)]. Les coûts de production du rizirrigué sont d'environ 1 340 US\$/ha [IRGA, 1991 (6)], ce qui correspond compte tenu des prix pratiqués à une productivité de près de 5 000 Kg/ha de riz de qualité, contre 540 à 600 US\$/ha de coûts de production pour le riz pluvial de haute technologie, ce qui necessiterait dans ce cas entre 2 000 et 2 250 Kg/ha de production pour couvrir les coûts, avec un riz de même qualité⁽¹⁾.

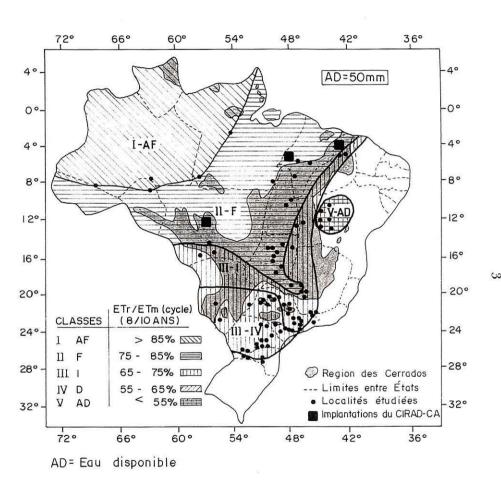
Avec une surface actuelle de 4,3 million d'hectares dont plus d'un million en conditions pédoclimatiques favorables à sa culture, le riz pluvial peut relever le défi alimentaire du Brésil de l'an 2 000, à condition qu'il devienne un produit de qualité égale (ou supérieure) à celle du riz irrigué pour stimuler les producteurs avec des prix rémunérateurs et stables qui permettront d'intégrer cette culture définitivement, comme partenaire à la hauteur du soja, dans les systèmes de cultures des régions favorables de la zone tropical humide (fronts pionniers de l'Ouest, du Nord Brésil).

Ce sont les étapes de cette intégration du riz pluvial, comme composante rémunératrice essentielle, de la stabilité économique des systèmes de culture des fronts pionniers humides, que nous nous proposons de décrire dans cet article, en insistant, sur la nécessité pour la recherche, dans sa démarche, de créer des cultivars de haute qualité dans le cadre de systèmes de cultures qui soient capables d'exprimer leur potentiel et d'assurer leur stabilité économique.

II - LES RÉGIONS PÉDOCLIMATIQUES FAVORABLES À LA STABILISATION DE LA RIZICULTURE PLUVIALE : l'Ouest, le Nord Ouest et le Nord du Brésil

Les régions d'élection de la


culture de riz pluvial sont les écologies à faible risque climatique. Les travaux de Steinmetz S. (et al., 1988), ont établi un indice de productivité espérée (IPE), égal au produit de la productivité potentielle du cultivar (IVAR) par le plus petit indice de satisfaction des necessités en eau de la plante durant la période la plus critique (ETr/ETm).PC; IPE =IVAR x ETr (cycle) x ETr/ETm (PC). En fonction de l'indice de satisfaction des besoins en eau, [Steinmetz et al. 1988 (31)], ont cartographié les aptitudes à la riziculture pluviale du territoire brésilien, en 5 grandes régions agroclimatiques : hautement favorisées (AF), favorisées (F), intermédiaires(I), défavorisées(D) et hautement défavorisées (HD) (cartes 1 et 2). En prenant comme reserve d'eau utile dans le sol : 50 mm et 90 mm, les cartes montrent que les régions pédoclimatiques les plus favorables à la riziculture pluviale, lorsque la réserve en eau utile est la plus faible, sont situées dans les régions à forte pluviométrie, des états de l'Ouest, du Nord et du Nord Ouest, qui correspondent en gros, aux savanes et forêts humides du bassin amazonien et de son pourtour immédiat.


Cette représentation théorique n'a évidemment de sens pour son application, que si les techniques culturales utilisées sous chaque régime pluviométrique, sont capables de fournir à la culture, dans les périodes les plus critiques, ces réserves d'eau, et que ces techniques culturales soient applicables et reproductibles en milieu réel, chez les agriculteurs.

Parmi les régions hautement favorisées, les états du Maranhão et du Mato Grosso sont les plus gros producteurs de riz pluvial actuels du Brésil. Au Maranhão, la riziculture pluviale est pratiquée sur plus de 1 000 000 hectares par des petits agriculteurs (le plus souvent sans terres), sur brûlis et sans intrants: plus de 360 mille familles sont

⁽¹⁾ Sous reserve que sa commercialisation soit organisée, notamment vers les grandes villes proches des régions favorisées de production (Ouest, Centre Ouest, Nord), qui sont toutes alimentées en riz de qualité en provenance des états du Sud (souvent à plus de 3 000 km de la zone de production des états du Sud).

CARTES 1 ET 2 - ZONAGE AGRO CLIMATIQUE PRELIMINAIRE DU RIZ PLUVIAL AU BRESIL POUR 2 NIVEAUX D'EAU DISPONIBLE (AD-50 ET 90 mm) - CNPAF - GOIANIA - STEINMETZ (1988)

engagées dans cette production, dont 98% sur des surfaces inférieures à 10 hectares [Teixeira S.M., 1991 (33)], plus de 500 000 hectares sont classés dans la région hautement favorisée pour la culture du riz pluvial [Embrapa, 1992 (2)].

Dans l'état du Mato Grosso, la riziculture pluviale dominante est pratiquée depuis le début des années 1970 par des grands agriculteurs, en système mécanisé, à la fois, comme culture d'ouverture des terres de fronts pionniers, et plus récemment, comme culture de rotation du soja [Séguy L., Bouzinac S. et al., 1993 (27), 1994 (28)]. Plus de 200 000 hectares sont cultivés en région classée comme hautement favorisée (Embrapa, 1992 (2)].

Les sols dominants sous forte pluviométrie (supérieure à 1800 mm), sont les sols ferrallitiques acides (oxysols, ultisols) de la zone tropical humide des savanes (cerrados) et des forêts; le potentiel de surfaces encore inexploitées au Brésil est considérable en zones de savanes(1) (Mato Grosso, Rondônia, Acre e Maranhão).

(*) Dans les régions où le risque climatique est plus élevé, les cultures de soja surtout, puis mais et sorgho, montrent des aptitudes meilleures que le riz pluvial, une stabilité de production meilleure, et des filières économiques mieux organisées, autant de critères de stabilité que le riz pluvial ne pouvait offrir dans le début des années 1980.

III - LA PLACE DU RIZ PLU-VIAL DANS LES SYSTÈMES DE **CULTURE, SUR LES FRONTS** PIONNIERS DE L'OUEST BRÉSILIEN, ET LES RÉGIONS NORD PRÉ-AMAZO-NIENNES - Une description simplifiée des systèmes principaux traditionnels et de l'évolution actuelle de la culture.

La tradition du Nord : les systèmes de culture itinérants - Dans les régions favorisées de l'état du Maranhão (régions du

Cocais, préamazonie), le riz est pratiqué traditionnellement sur brûlis de forêt dans l'Ouest et le Sud Ouest, et sur brûlis de jachères secondaires à palmiers babaçus (Orbignia martiana), de 5 à 10 ans, dans la région du Cocais. La riziculture est, pour 90%, assurée par de petits paysans non propriétaires sur des exploitations familiales de moins de 10 hectares ; 70% de la production de riz proviennent des systèmes de cultures associées : riz + mais et manioc. Le sol n'est jamais travaillé, il n'y a pas d'utilisation d'engrais ni d'herbicide ; les structures d'encadrement et d'approvisionnement en moyens de production sont extrêmement limitées. Les cultures associées à base de riz sont pratiquées durant 2 à 3 ans après defrichement, et les champs sont ensuite abandonnés pour une nouvelle période de jachère, par suite de la baisse de productivité avec le temps et de l'accroissement de la pression des adventices. Les rendements moyens en riz pluvial dans ces systèmes, passent de 1 500 à 2 500 Kg/ha la première année après défrichement, à moins de 1 000 Kg/ha la 3º année. Les productions de mais et manioc sont d'environ 400 Kg/ha et 7000 Kg/harespectivement, sur brûlis, et décroissent ensuite rapidement [Séguy L. et al. 1982 (19), Teixeira S. M. et al., 1991 (33)].

Les travaux de recherchedéveloppement conduits par le CIRAD-CA et l'EMAPA⁽²⁾ ont montré entre 1978 et 1982, qu'il était possible de fixer cette petite agriculture itinérante dans la région du Cocais, sans introduction de mécanisation, à partir de systèmes améliorés de cultures associées, pratiquées en semis direct, sur des unités paysage aménagées contre l'érosion avec des cordons antiérosifs plantés de cultures de pente, diversifiées : canne à sucre, banane, ananas, citrus, fruit de la passion, poivre, sous palmiers babaçus exploités pour l'huile, la construction,

l'artisanat [Séguy L. et al. 1982 (13)]. L'essentiel des résultats agro-économiques obtenus en milieu réel, chez les agriculteurs, après 3 ans de fixation montre que, par rapport au système itinérant traditionnel, sans intrants, les meilleurs systèmes fixés, très stables, procurent (tableaux 1,2,3):

sans engrais : des augmentations de productivité de plus de 50%, sur les produits riz, maïs, des marges et une valorisation de la journée de travail, de 2 à 3 fois supérieures, avec un calendrier cultural moins chargé.

- avec engrais : les augmentations de productivités sur les produits riz⁽¹⁾, maïs et vigna sont 2 à 3 fois supérieures, de même que les marges et la valorisation de la journée de travail.

L'optimisation des assolements, après 4 ans de résultats et compte tenu de l'utilisation optimale de la main d'oeuvre, conduit à proposer des modules d'exploitations fixés sur 3 ans, extrêmement performants, stables, diversifiés, qui combinent les meilleurs systèmes fixés. Compte tenu des déficiences des circuits d'approvisionnements en intrants et des difficultés de crédit, divers modules différenciés aux plans des coûts de production et de l'utilisation des intrants sont proposés aux agriculteurs et aux communautés villageoises, pour qu'ils puissent appliquer les résultats obtenus même dans les cas d'assistance les plus défavorables (cf. tableau 3).

De nombreuses variétés de riz pluvial, améliorées (critères des chercheurs et des agriculteurs), sont mises à la disposition des agriculteurs: 25 variétés sont proposées et testées dans les systèmes; 5 sont retenues par les agriculteurs; IRAT 101, IRAT 112, IREM 16-B, IREM 247, CABASSOU. Les cycles vont de 85-90 jours à 110-120 jours pour mieux étaler la récolte [Séguy L.

et al., 1982 (13)].

Des formules de fertilisation sont proposées pour tous les

Plusieurs millions d'hectares au Brésil. En Amerique Latine, les savanes de sols acides occupent 243 millions d'hectares concentrés pour l'essentiel au Brésil, en Colombie et au Venezuela, surfaces donc considerables pour alimenter l'humanité du siècle prochain.
 Structure de recherche de l'état du Maranhão - São Luis - Nord Brésil

Riz en culture pure

Tableau 1

Riz en culture associée

Productivité du riz pluvial dans les systèmes de culture,	dans deux communautés villageoises en 1981. Région du Cocais, Maranhão
---	--

			dz ch cu	ture assoc	ACC						ruz en eura	ac parc		
Local d'application		riété ionnelle	IR	AT 10	IRA	AT 101	e¥-			riété ionnelle	IRAT	Γ10	IRA'	Γ 101
	0	A+H	Н	A+H	H	A+H			H	A+H	H	A+H	H	A+H
Brejinho (18 producteurs)			-											
- Traction animale	1 395	2 237	2 137	3 232	2 776	3 986			908	1 404	2 456	3 356	2 919	5 219
(9 producteurs) - Manuel (9 producteurs)	2 249	2 962	2 018	3 010	2 470	3 465			2 404	2 721	3 098	4 500	2 721	3 722
Firmino														
(11 producteurs) - Manuel	1 488	2 503	1 414	2 146	2 498	2 890			1 582	2 064	1 536	2 334	2 763	3 174
X Brejinho + Firmino	1 710	2 567	1 856	2 796	2 581	3 447			1 613	2 063	2 363	3 396	2 801	4 038
Productivité relative (%)	100	150	108	163	151	201		ā	94	121	138	199	164	236

H : herbicide, A = engrais, O = sans engrais, ni herbicide Source : Séguy L., Bouzinac S. et al., 1982 (14)

Tableau 2
Performances économiques des systèmes de cultures appliqués dans deux communautés villageoises en 1981. Région du Cocais, Maranhão

			R	iz en cult	ure associée	1				Riz en cultur	e pure		
Local	Données économiques		ariété tionnelle	IF	AT 10	IR	AT 101		ariété tionnelle	IRA	Т 10	IRA	T 101
		0	A + H	H	A+H	H	A + H	H	A+H	H	A + H	H	A+H
Brejinho	Solde/ha	433	406	843	1 050	723	877	285	249	458	644	492	634
(18 producteurs)	VIT*	5,9	5,8	9,7	10	8,5	8,3	4,8	4,0	6,9	7.8	8,2	8,7
(VJT* NJT*	5,9 73	5,8 69	87	105	85	105	59	62	66	82	60	73
Firmino	Solde/ha	370	389	249	312	478	458	220	207	222	267	488	448
(11 producteurs)	VIT*	4.3	5	4,1	4,46	6,1	5,5	3,7	3,4	3.9	3,6	6,3	4,8
(11 productions)	VJT* NJT*	4,3 86	5 78	60	70	78	83	59	62	3,9 59	74	77	92
X Brejinho	Solde/ha	406	399	610	773	615	700	258	232	360	493	491	555
1	VJT*	5.3	5.6	7,5	8,5	7,4	7,1		3,7	5,6	6,2	7,4	7.0
Firmino	NJT*	5,3 77	5,6 72	81	91	83	98	4,4 59	62	64	80	66	7,0 79
Indice des performances	Solde/ha	100	98	150	190	151	172	63	57	88	121	120	136
économiques (%)	VJT*	100	105	143	162	142	136	83	71	107	117	142	134
	ŇJT*	100	93	105	135	107	127	76	80	83	104	85	102

* VJT : Valorisation de la journée de travail et solde/ha en US\$; NJT : nombre de jours de travail/ha. Source : Séguy L., Bouzinac S. et al., 1982 (14)

Tableau 3

Assolements optimisés sur 3 ans. Performances agro-économiques de quelques modules d'exploitation, comparées à celles du témoin itinérant

Assolements	P	roduction o	cumulée (K	(g/ha)	Coûts de	Marges brutes	Nombre de	Valorisation moyenne
optimisés	Riz	Maïs	Vigna	Manioc	production cumulés US\$	cumulées US\$	jours de travail cumulés	de la journée de travail (US\$/jour)
(1) 2 ha 0,5 CAT (A + H) M 0,5 CAS (0) M 1,0 (R-Ma-R) HT	11 821	1 535	429	33 811	627	3 210	581	5,5
(2) 1,5 ha 1,0 (R-Ma-R) HT 0,25 CAS (A + H) M 0,25 CAS (A + H) M	9 472	746	274	30 912	621	3 648	497	7,3
(3) 1,5 ha 0,5 CAT (A + H) M 0,5 (R-R-R) (A + H) M 0,25 CAS (A + H) M 0,25 CAS (A + H) M _{cc}	16 605	1 511	519	6 964	1 088	2 800	500	5,6
$ \begin{array}{c} \textbf{(4)} \boxed{\textbf{1,75 ha}} \\ \textbf{0,75 CAT (A+H) M} \\ \textbf{0,50 CAS (A+H) M} \\ \textbf{0,50 CAS (A+H) M}_{cc} \end{array} $	18 583	2 642	915	9 926	1 322	3 635	610	5,9
1,5 ha Témoin itinérant CAT (0) T	6 931	1 105	234	977-tu	188	1 213	520	2,3

CAT: cultures associées traditionnelles, CAS: cultures associées systématisées, R: riz, Ma: manioc, A: engrais, H: herbicide, M: variétés améliorées, T: variétés traditionnelles, cm: cycle moyen, cc: cycle court, O: sans engrais, ni herbicide.

Source: Séguy L., Bouzinac S. et al., 1982 (14)

systèmes fixés, de la première année à la quatrième année de fixation, de même que des formules herbicides et des variétés de plus en plus performantes [Séguy L. et al., 1981-1982 (12), (13), (14); Bouzinac S. et al., 1982 (1)](i).

La démarche opérationnelle en milieu réel mise au point, a permis une formation et professionnalisation accélérées des divers acteurs du développement : chercheurs, vulgarisateurs, agriculteurs.

Expérience extrêmement riche sur le plan méthodologique pour la recherche, par la mise au point d'une méthode d'intervention opérationnelle de la recherche, avec les différents acteurs, dans leur milieu, elle met en relief, notamment:

- la complémentarité des approches systémique thématique au profit d'une agronomie de synthèse efficace tant pour ses applications que pour gérer des connaissances.

- des outils méthodologiques performants pour hiérarchisation permanente des facteurs de production au fur et à mesure du processus de fixation de l'agriculture.

Latradition des fronts pionniers-Le riz, culture d'ouverture des terres-

Ce sont les agriculteurs du Sud qui vont, à la fin des années 1970, début des années 1980, coloniser et conquérir les états du centre ouest puis de l'Ouest et du Nord: les frontières agricoles ; ces colonisateurs du Sud, sont d'abord attirés par la spéculation sur la terre (quelques hectares du Sud, permettent d'acheter des centaines d'hectares sur les frontières) et y apportent leur système de culture traditionnel: défrichement au cable d'acier, mise en andains de la végétation arbustive et brûlis, puis semis de

riz pluvial qui est la culture la moins exigeante vis à vis de l'acidité des sols. Pour sa culture sur défriche de savanes (cerrados), l'Embrapa [1982, (2)], ne l'application recommande d'engrais calcomagnésiens que lorsque le taux de saturation de l'aluminium échangeable est supérieur ou égal à 50% (2). Pour des objectifs de rendements compris entre 1 800 et 3 000 Kg/ ha, une fertilisation NPK soluble de type $10N - 60 - P_2O_5 - 70K_2O + zinc^{(3)}$, est appliquée sous la ligne de semis et complétée par une couverture azotée de 20 Kg N/ha. Le riz pluvial est plantée 2 années successives, puis ensuite 2 options possibles : ou bien le riz est planté en mélange avec du pâturage (Brachiaria decumbens) qui sera exploitée extensivement (moins de 0,5 UGB/ha au Mato Grosso) pendant 10 ans et plus, ou bien le sol est amendé⁽⁴⁾ avec du calcaire dolomitique pour rentrer dans le cycle ininterrompu de monoculture de soja. Comme dans les états du Sud, mais de manière plus rapide dans ces régions chaudes et humides, la préparation continue et inadéquate des sols à l'offset, sans restitution organique importante, a conduit à une érosion accelérée et catastrophique du "capital sol", avec dans les cas les plus sévères, faillites rapides et adandons des terroirs [Séguy L., Bouzinac S. et al., 1989 (19), 1993 (27), 1994 (28)].

Dans ces 2 grands systèmes très traditionnels, jusqu'en 1985, sur les fronts pionniers du centre nord du Mato Grosso, le riz pluvial, n'est qu'une culture d'ouverture des terres neuves et laisse la place rapidement, ou au pâturage extensif, ou au soja.

Une innovation écologique de la recherche(5) - Le riz pluvial comme culture de réforme des pâturages dégradés.

Ce système intègre les activités de production de grains et d'élevage (traditionnellement séparées), comme une alternative de récupération des pâturages dégradés associée à la valorisation de la culture du riz pluvial dans les savanes (cerrados). Le système consiste basiquement à réduire la population du pâturage dégradé (Brachiaria), à l'offset lourd, environ 30 jours avant la fin de la saison sèche ; au début des pluies estrealisé un passage d'offset léger, suivi d'un labour profond au soc, dressé et fermé en surface, motteux. Le riz(6) est planté en même temps que les semences de pâturages qui sont mélangées à l'engrais, à la dose de 5 Kg/ha. La fumure minérale NPK, localisée sous la ligne de semis, est quantifiée de manière à laisser un effet résiduel notable sur le pâturage (40N - 90 P₅O₅ - 70K₅O/ ha). L'analyse agroèconomique des résultats de ce système réalisée en mai 1990 en milieu réel, montre que les coûts de production sont d'environ US\$ 4,5/sac de 60 Kg, contre une recette de US\$ 5,8/ sac, soit um marge brute de 27% pour une productivité moyenne de riz de 2 160 Kg/ha (cultivar Guarani). En ce qui concerne l'exploitation du pâturage en succession, la charge de bétail à l'hectare a été multipliée par 3, même en saison sèche, le taux de natalité a augmenté significativement, la mortalité a baissé, de même que la pression des termites et des mauvaises herbes [Pacheco A.R. et al. 1990 (9); Kluthcouski J. et al. 1991 (7)]

Ce système de réforme de pâturages dégradés grâce à une culture de riz pluvial lucrative a bas niveau d'intrants, non polluante pour le milieu, a pris le nom de "système barreirão" et est en voie de diffusion active à l'échelle des cerrados, sur des surfaces considérables.

Il est important, maintenant, de

⁽¹⁾ Les productivités des meilleures variétés de riz pluvial, en milieu réel, dépassaient déjà, en moyenne en 1981 plus de 3 000 Kg/ha, même en système de cultures associés. Les meilleurs systèmes proposés, avec engrais et herbicides permettaient d'obtenir plus de 700 US\$/ha de marges brutes, résultat qu'envieraient bien des agricultures modernes mécanisées des pays du Nord.

⁽²⁾ Les nécessités en calcaire dolomitique broyé (NC), sont, pour la culture de riz pluvial :

- en sols de texture argileuse : NC (T/ha) = 2 x Al³⁺ +[2 - (Ca²⁺ + Mg²⁺)]

- en sols sableux et sablo-argileux : NC (T/ha) = 2 x Al³⁺ ou

NC/T/ha = 2 - (Ca²⁺ + Mg²⁺)

⁽³⁾ Pour une période de 4 à 5 ans de culture, en Kg/ha, Zn = 4 à 6; (4) Pour un taux minimum de saturation de bases de 40% [Séguy L., Bouzinac S. et al., 1993, (27)].

⁽⁵⁾ Système crée par le CNPAF (Centre de recherche fédéral sur le riz et le haricot de l'EMBRAPA), grâce à une technique de labour profond "inversé", mise au point par le CIRAD-CA [Séguy L. et al., 1984 (15)].

⁽⁶⁾ Sans herbicide.

substituer, dans ce système, le cultivar à cycle court Guarani, par un cultivar de même cycle à très belle qualité de grain (long fin) pouraugmentersignificativement les revenus des agriculteurs(1).

Le riz phwial en rotation avec le soja: un mariage de raison, pour la fixation d'une agriculture durable sur les fronts pionniers - 1986/1992.

Entre 1986 et 1989, le CIRAD-CA et le CNPAF, sont intervenus dans diverses écologies très contrastées du centre ouest et en particulier sur les fronts pionniers humides de l'ouest, pour tenter de stabiliser la culture du riz pluvial à partir du système mécanisé monoculture de soja, généralisé. Les recherches pour atteindre cet objectif ont été conduites en milieu réel, chez les agriculteurs à partir d'unités expérimentales, dites de "créationdiffusion" de systèmes de culture, véritables vitrines de l'offre technologique qui sont construites à partir d'un diagnosagrosocio-économique caractérisant la situation initiale régionale [Séguy L. et al., 1994 (29)].

A partir des résultats du diagnostic, on procède à une modélisation des systèmes de culture traduite sous la forme d'une matrice systématisée qui crée et évalue une très large gamme de systèmes diversifiés, en prenant le système de culture traditionnel comme référence permanente ; cette matrice des systèmes de culture est conduite en conditions d'exploitations réelles, et à l'échelle d'une unité de paysage représentative [Séguy L. et al., 1994 (29)]. Le dispositif expérimental de comparaison des systèmes de culture est pérennisé pour 6 ans, et permet d'acquérir un ensemble de données biologiques et agronomiques sur le fonctionnement des cultures, des rotations et des modes de tradu sol (rendements. composantes du rendement, et leur variabilité inter-annuelle, itinéraires techniques, calendrier

et faisabilité des travaux, effets cumulatifs des systèmes sur l'évolution du statut de fertilité du sol, etc...).

Cet ensemble de données pluriannuelles constitue nos références de base et offre des possibilités de généralisation à partir d'éléments explicatifs : croissance, développement, formation de la production dans les systèmes de culture, stabilité interannuelle, etc...

Les résultats les plus significatifs, extraits de cette étude sur les systèmes de culture, proviennent de l'unité expérimentale de la Progresso⁽²⁾ fazenda ferrallitique rouge-jaune, 2 000 à 3 000 mm de pluie repartie sur 7 mois 1/2) entre 1986 et 1992, et sont exposés dans les figures 1, 2 et 3; ils permettent de tirer les conclusions suivantes:

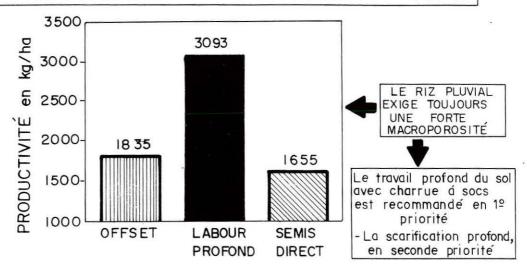
- au plan agronomique, la productivité du riz pluvial⁽³⁾, en rotation avec so ja est condition née par le travail profond du sol à la charrue à socs. Ce mode de travail de travail du sol procure des augmentations de rendements de 68% par rapport au témoin à l'offsetet86% par rapportau semis direct sur résidus de récolte: 3093 Kg/ha de rendement moyen contre 1 835 Kg/ha et 1 655 Kg/ ha, respectivement (fig. 1).

Sur la même période, le soja, accuse un réponse hautement significative à la rotation avec le riz pluvial par rapport à sa monoculture, et aux modes de travail du sol, labour ou semis direct, qui sont équivalents entre eux: le gain moyen de rendement est de plus de 80% (fig 1).

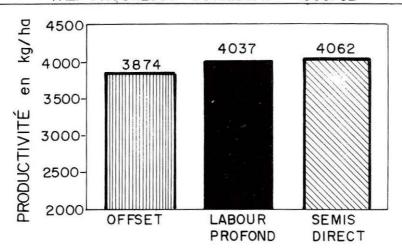
Sur soja et sur riz puvial, cultures les plus sensibles aux modes de gestion du sol et des cultures, l'amélioration spectaculaire des rendements provoquée par le travail profond du sol et les rotations, se traduit, au niveau du profil cultural, simultanément : par une amélioration importante de la structure du sol, sans discontinuité physique, une rédistribution des bases et de la matière organique en profondeur, qui induisent des dynamiques racinaires extrême-

ment puissantes dans les horizons profonds; à l'inverse, l'enracinement de ces mêmes cultures sur travail du sol à l'offset, reste prisonnier des 10-20 premiers centimètres offrant une capacité limitée d'interception des flux hydriques et minéraux, exposant les cultures aux excès climatiques (sécheresse, ou asphyxie périodique) - [Séguy L., Bouzinac S. et al., 1989 (18)].

En termes économiques, les systèmes de monoculture de riz et soja conduisent tous les deux à des marges nettes, toujours négatives. Par contre, le système soja-riz, à une seule culture annuelle et le système à 2 cultures annuelles en succession riz + sorgho alterné avec soja l'année suivante, procurent des marges nettes/ha toujours positives qui varient entre 98 et 375 US\$/ĥa, en fonction des prix payés aux agriculteurs et des coûts de production (figure 3).

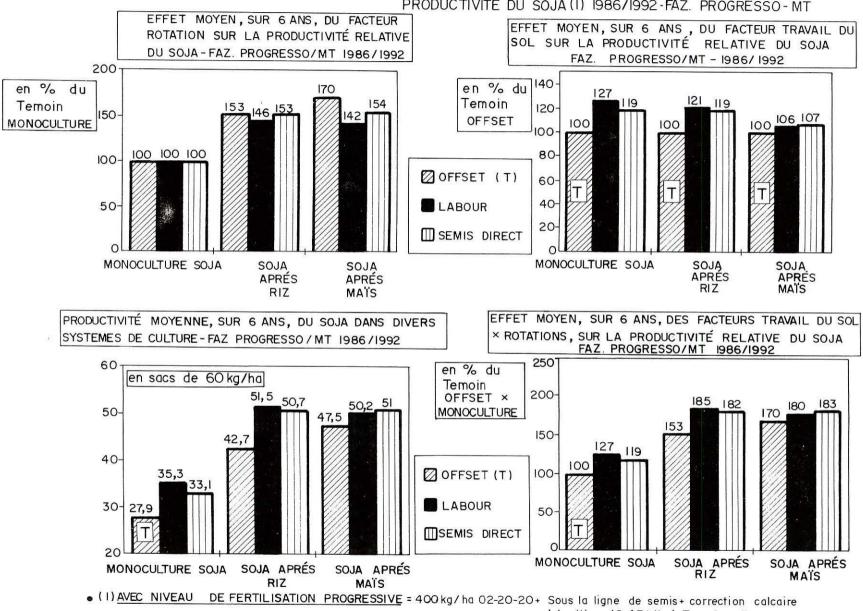

Le mariage des 2 cultures en rotation est donc nécessaire pour assurer de meilleures productivités plus stables, profitables aux 2 cultures et pour enrayer rapidement la course actuelle à la faillite économique provoquée par la pratique continue monoculture de soja aux engins à disques.

Les figures 4 et 6 qui réunissent les fluctuations des coûts de production du riz pluvial et les prix payés aux producteurs, entre 1988 1995, montrent l'introduction de la variété Îrat 216, en 1989, à grain long fin, de format plus proche des riz irrigués de qualité des états du Sud, à apporté, par rapport au riz pluvial commun, une plus-value immédiate sur le prix payé au producteur pour le sac de 60 Kg, de 30% en 1989, puis a progressé jusqu'à un maximum de 36% en 1991, et est restée ensuite à peu près constante autour de 30% jusqu'en 1995. L'année 1991, correspond à la diffusion spontanée de Irat 216 sur environ 20 000 hectares [Séguy L., Bouzinac S. et al. 1991(24)], avec une forte demande. En 1992, Irat 216 est


⁽¹⁾ Cultivar du CNPAF, du type CNA 8172, ou cultivars du CIRAD-CA, à très belle qualité de grain (très long fin) les mieux

⁽²⁾Unité experimentale de 180 hectares, installée sur les terres les plus anciennement mises en culture de la région (11 ans dont 4 de riz au départ, suivis de 7 ans de monoculture de soja pratiquée à l'offset). (3) Variétés utilisées : 1986/87 = Cuiabana ; 1987/88 = Cabassou ; 1988/89 à 1991/92 = Irat 216.

FRODUCTIVITÉ MOYENNE, SUR 5' ANS, DU RIZ PLUVIAL EN ROTATION AVEC SOJA-FAZ. PROGRESSO-SORRISO/MT-1986/91

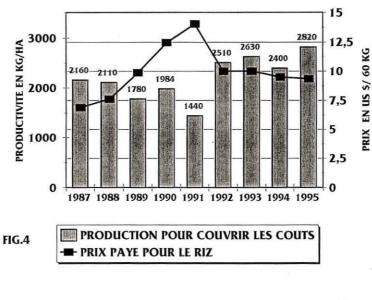


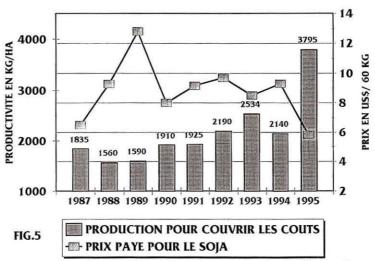
PRODUCTIVITÉ MOYENNE, SUR 6 ANS, DU MAÏS EN ROTATION AVEC SOJA, SUR 3 MODES DE PREPARATION DU SOL. FAZ. PROGRESSO-SORRISO/MT-1986/92

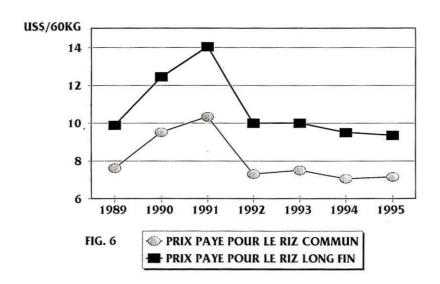
• <u>SOURCE</u> = CIRAD-CA (L. Seguy, S. Bouzinac - 1986/1992)

dolomitique (2 á 3 t/ha) Tous les 3 ans • SOURCE: CIRAD - CA (L. Seguy, S. Bouzinac.)

fig. 3 Performances économiques des meilleurs systèmes de cultures comparées à celles des monocultures de soja et riz-1988/91 FAZ PROGRESSO - MT MONOC. ROTATION ROTATION ROTATION MONOC. ROTATION R/S/R/S/R S/R/S/R/SS+50/S/S+50 SOJA RIZ R+So/S / R+So US\$/ha GR ARE ARE ARE ARE PD ESC PD +300 +250-+200-+150-+100-MARGES/hq -20 -20 -20 +50 -150 -200 +80 RENTABILITÉ +60 +40-+20 TAUX **→** 1990/91 I989/90 1988/89 GR - Offset ESC - Scarification ARE- Labour profond au soc PD - Semis direct So - Sorgho S- Soja R-Riz


MAXIMISER LES MARGES/ha, C'EST UTILISER ROTATIONS ET SUCCESSIONS DE


CULTURES


Systémes tampons de meilleure gestion du risque économique

(L. Seguy, S. Bouzinac.)

• SOURCE = CIRAD-CA

lancée officiellement(1), alors qu'elle couvre plus de 60 000 hectares(2) sur les fronts pionniers du centre nord Mato Grosso, et les prix payés au producteur perdent 40% (de 14 US\$/sac à 10,00 US\$/ sac), faute de filière organisée pour son usinage et sa commercialisation par les coopératives(3). On assiste donc, en l'absence de la filière organisée sur place, à un laminage des prix vers le bas : le niveau de qualité de grain de Irat 216, ne lui permet pas de soutenir la concurrence avec les riz irrigués du Sud, dont la filière commerciale est très bien organisée.

On notera également que les rapports de prix relatifs à chacune des cultures, riz et soja, sont relativement proches l'un de l'autre pour un même niveau d'intrants, confirmant bien l'intéret du riz pluvial de qualité, comme partenaire économique à la hauteur, dans le système riz-

soja⁽⁴⁾ (figures 4 et 5).

Enfin, des enquêtes (5) conduites, deux années de suite, en 1989 et 1990, dans tout le centre ouest Brésil ont permis de mesurer l'importance de la diffusion des systèmes de culture et leur impact sur le développement; l'évaluation a porté sur un échantillon de 42.664 hectares (116 producteurs), en 1989 et de 17.123 hectares (57 producteurs) en 1990; elle montre que les performances moyennes des systèmes de culture et leur classement sont conformes à ceux de l'unité expérimentale de la fazenda Progresso, traduisantainsi que ces technologies ont une portée très large dans l'agriculture mécanisée du centre ouest et que la méthode de recherche-action utilisée (diagnostic initial, puis création-diffusion de systèmes de culture en milieu réel, avec les acteurs) est fiable et constitue un outil méthodologique précieux pour ce type de développement, dans ce milieu [Séguy, L., Bouzinac S. et al., 1989 (17), 1990 (22)].

IV - LA STABILISATION DE LA CULTURE DE RIZ PLUVIAL ZONE TROPICALE HUMIDE: Création variétale de cultivars à haute productivité et de qualité de grain supérieure dans le cadre de systèmes de culture lucratifs et stables

4.1 Stratégie et méthodes

Encadrer la région favorisée

Le travail de sélection réalisé entre 1990 et 1995 par le CIRAD-CA, encadre la grande région "favorisée" de l'Ouest et du Nord Brésil, entre le 4° et 14° de latitude Sud, dans les zones les plus fortes productrices de riz pluvial: fronts pionniers de l'Ouest du Mato Grosso (savanes et forêts), préamazonie dans l'état du Maranhão (forêts), bordure nord ouest humide de l'état du Piauí (forêts secondaires à Orbygnia martiana) - (carte 3).

Les critères principaux de sélection: ce sont, simultanément : haute productivité, stable, supérieure à 4500-5000 Kg/ha, grain long fin à très long fin, de format égal ou supérieur à celui des meilleurs riz irrigués de Rio Grande do Sul, degarantie rémunérateurs sur le marché (le paddy long fin, s'achète au producteur dans le Sud, de 15 à 60% plus cher que sur les frontières agricoles du Mato Grosso-Source: Irga-In lavoura arrozeira, set/out 1992).

- Résistance à la verse, même

après maturité :

 Résistance stable aux maladies cryptogamiques les plus agressives des genres Pyricularia, Phoma, Rynchosporium, Drechslera, Tanatephorus.

- Bonne tenue au champ à surmaturité en conditions très humides (senescence non totalerésistance à l'égrenage et au clivage du grain).

Rendement à l'usinage

supérieur à 50%.

- Cycles courts de 100-110 jours pour intégrer le riz dans les successions annuelles riz + mais, riz + coton, riz + haricot, riz + légumineuses engrais vert, et pour profiter du prix les plus élevés sur le marché, en janvier, avant la récolte du Rio Grande do Sul ; cycles moyens de 120 à 130 jours, destinés aux successions annuelles riz + sorgho, mil, aux systèmes à une seule culture annuelle (riz soja, riz - maïs, etc...)

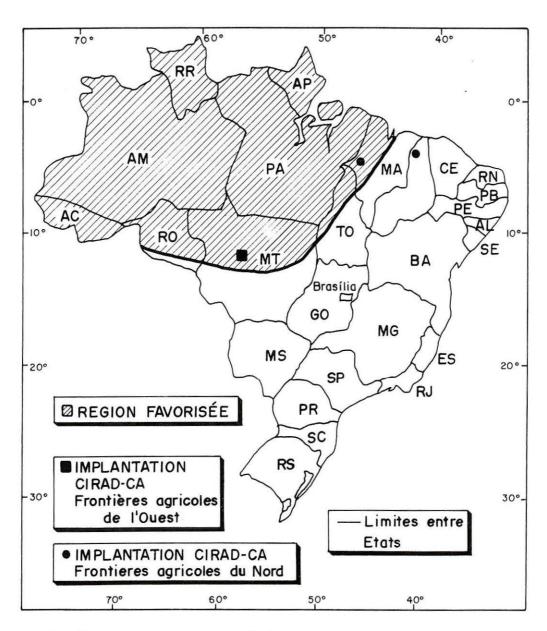
- Résistance aux insectes les plus nuisibles tels que les borers : Elasmopalpus lignoselus, Diatraea saccharalis, les punaises : Tibraca limbativentris, Oebalus poecilus.

Sélectionner "du pluvial vers l'irrigué" - Le matériel génétique recherché est proche des phénotypes irrigués pour satisfaire aux critères de résistance à la verse, qualité de grain, productivité ; l'utilisation de variétés irriguées est donc incontournable; elles seront triées en conditions pluviales sous fortes pressions de sélection pour les critères retenus.

La séparation traditionnelle "irrigué-pluvial" s'estompe au profit d'une démarche de création variétale qui intègre japonicas et indicas, en identifiant et sélectionnant des génotypes "ponts" entre les deux genres pour surmonter le principal obstacle de la stérilité. Le matériel créé en conditions pluviales, sous pressions de sélection beaucoup plus sévères qu'en régime irrigué, pourra également servir aux conditions de cultures irriguées (utilisation directe des variétés pour la production et comme géniteurs).

Sélectionner pour, et dans les systèmes de culture.

Les interactions "génotypes x conditions pédoclimatiques x modes de gestion des sols" sont essentielles à prendre en compte dans le dispositif de création variétale, pour, à la fois, au niveau


[Séguy L. et al., 1988 (17), 1990 (22)].

⁽¹⁾ Par le CNPAF (EMBRAPA) qui produit désormais les semences de base. La variété est dénommée : Rio Verde.

⁽²⁾ Données des services de vulgarisation régionaux (EMATER) et services d'assistance technique privée.
(3) Irat 216, sera produit et usiné par de grands propriétaires entrepreneurs des fronts pionniers qui utiliseront Irat 216 pour le revendre dans les états du Sud, en mélange avec le riginant de le privage de le privage de la privage

⁽⁴⁾ Exceptée en 1995, où les coûts de production du soja sont devenus prohibitifs et les prix payés aux producteurs sont 30% inférieurs à ceux offerts dans les états developpés du Sud. Avec des taux d'intérêts annuels sur le crédit de 60% par an, la faillite de la culture de soja est décrétée sur les fronts pionniers du centre nord Mato Grosso.

(5) Enquêtes conduites par l'EMBRAPA/CNPAF et le CIRAD-CA sur financement du Ministère Français des Affaires Étrangères

carte 3 Carte du Brésil: Région favorisée pour la riziculture pluviale et implantations du CIRAD-CA

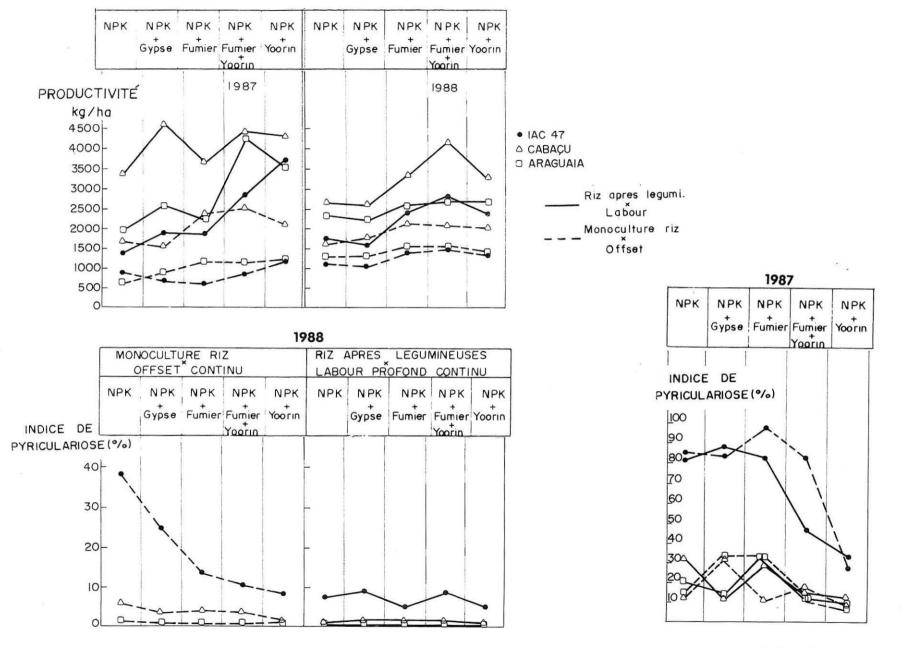
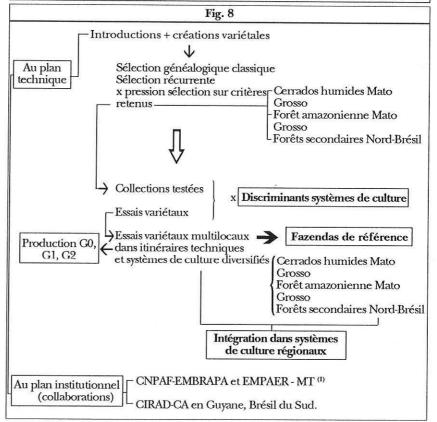


Fig. 7 INFLUENCE DU MODE DE GESTION DU SOL ET DE LA FERTILISATION SUR LA PRODUCTIVITE ET L'INDICE DE PYRICULARIOSE POUR 3 VARIETES DE RIZ PLUVIAL - GOIANIA - 1987 ET 1988.

de la création, disposer de cribles de sélection efficaces et au niveau des applications, mieux connaitre les limites d'utilisation du matériel végétal, donc aider à une diffusion efficace.

L'importance des interactions "génotypes x modes de gestion du milieu" est donc décisive à prendre en compte pour la sélection de matériel à résistance stable à Pyricularia oryzae (de type polygénique, "horizontale") -[Séguy L., Notteghem J. L. et al., 1981 (10)]. Sur les sols acides ferrallitiques du Brésil, la prise en compte des interactions dans le dispositif de sélection peut se faire par le choix des systèmes des cultures les plus sélectifs, qui exacerbent la sensibilité des cultivars ou au contraire, minimisent l'incidence de Pyricularia oryzae, sur une même parcelle, dans les mêmes conditions climatiques, comme l'indiquent les résultats du tableau 4 et de la fig. 7 [Séguy L., Bouzinac S. et al. 1989 (20), 1991 (24), 1992 (26)].


Le schéma opérationnel de création variétale dans les systèmes de culture de la zone tropicale humide (ouest nord Brésil), est

exposé dans la fig. 8.

Dès la génération F_s et jusqu'en F_s, le matériel génétique est évalué dans les écologies humides de l'Ouest (forêts et savanes) et du Nord (forêts secondaires); il est soumis à 2 grands types de systèmes(2) de culture dont l'un exacerbe la sensibilité au complexe parasitaire, l'autre au contraire, réduitau minimum son incidence. Les deux grands types de systèmes(3) correspondent à une réalité de production car ils ont déjà été diffusés en milieu réel, le processus de sélection coïncide donc bien avec la pratique de la culture au niveau régional.

À partir de la F₅ (croisements entre groupes génétiques proches) et F₆, les meilleures lignées entrent dans la voie classique

Tableau 4 Incidence du mode de défrichement sur les propriétés chimiques du sol, la sensibilité du riz pluvial (cultivar : IAC 47) à Pyricularia, et sa productivité -1984 P^{ppm} $\begin{array}{cc} pH & \frac{meq}{100} \frac{g}{Al} \\ eau & \overline{Ca + Mg} & \overline{Al} \end{array}$ M.O. Nombre Pyriculariose Productivité K % panicules do cou (1) Kg/ha /m² Sur andains 6.2 4.9 0,0 18,8 280,7 3,7 161 13,4 4 120 de végétation brûlés Entre les andains 4,8 0,5 0,9 0,9 31.5 102 3.2 65,7 500 (horizon 0-10 cm décapé) (1) Pourcentage de panicules détruites. Source : Vales M., Séguy et al., 1984, CNPAF - Goiânia

d'évaluation: collections testées puis essais variétaux multilocaux, mais conduits dans les systèmes de culture, auxquels le matériel génétique est destiné⁽³⁾. Le meilleur matériel, à partir des F₅, F₆ est repassé au CNPAF⁽¹⁾ (EMBRAPA) pour être testé dans le réseau d'évaluation, national.

Élargir les bases génétiques

Les bases génétiques pour la création de matériel à cycle court, sont extrêmement étroites et surutilisées par toutes les institutions de recherche : IAC 25, Dourado précoce, pratão precoce, IAC 165, 164, sont les variétés toujours utilisées. Il est nécessaire d'iden-

(2) Excepté, dans le Nord, où les sols sont de meilleure fertilité et où l'incidence des maladies est plus faible (Séguy L., Bouzinac

⁽¹⁾ CNPAF-EMBRAPA - Centre de recherche fédéral sur le riz et le haricot basé à Goiânia. EMPAER - MT - Structure de recherche et de vulgarisation de l'état du Mato Grosso (Cuiabá).

⁽³⁾ Le système qui exacerbe la sensibilité du matériel végétal : travail du sol à l'offset, rotation avec céréales maïs, sorgho, mil (excepté riz), deux dates de semis : précoce (octobre) et tardive (décembre) ; fumure PK soluble localisée sous la ligne (60-70 P₂O₅ - 60-70 K₂O + 4 Zn/ha) forte fumure azotée en couverture, entre le semis et 60 jours (80 N/ha), forte densité de semis sur un faible espacement entre ligne (20-25 cm). Le système qui minimise l'incidence des maladies (*Pyricularia*, *phoma*) : travail profond du sol, rotation après 2 ans successifs de soja, ou sur pâturage, ou sur savane vierge, deux dates de semis, identiques au premier système, fumure de fond phosphatée non soluble : thermophosphate pulverulent (2000 Kg/ha) + gypse (600 Kg/ha), 60-80N + 90 K₈O/ha en couverture, faible densité de semis (de 20 à 60 Kg/ha) avec espacement de 45 cm entre lignes.

tifier de nouvelles sources, à qualité de grain long et très long fin, à resistance stable à Pyricularia, et à la verse.

4.2 - RÉSULTATS

Première étape : trier dans le matériel existant, créer de nouveaux phénotypes à haute productivité, de qualité de grain proche de celles des riz irrigués du Sud, dans les meilleurs systèmes de culture .1990-1994

La base du travail d'améliorations variétale a été construite à partir de la variété Irat 216(1), de lignées F₄ et F₆ originaires du CIAT [Surapong, Sarkarung, Zeigler R.S., 1989 (32)] dont le CIRAD-CA a achevé la sélection [Séguy L., Bouzinac S. et al., 1990 (21), 1993 (27)], de variétés du Surinam, de croisements divers avec Irat 216, de sélections diverses à partir de pieds différents repérés dans des variétés irrigués. L'ensemble de ce matériel végétal est passé au crible des écologies, et des systèmes de cultures en conditions pluviales.

Les variétés triées, directement utilisables par le développement, sont après 4 ans et 34 essais multilocaux : parmi les surinamiennes: Diwoni et Ciwini blancs(1) toutes les 2 à très belles qualité de grains, résistantes à la verse, à Rhyncosporium oryzae, et à Pyricularia o.; le cultivar Ciwini presente cependant une sensi-bilité notable à *Cercospora oryzae*; parmi les lignées F_6 , reçues du CIAT⁽²⁾, ont été sélectionnées(3): Ciat 20 (CT 6196-33-11-1-1-B), Ciat 18 (CT 6196-33-11-2P-6-B), Ciat 24 (CT 6241-19-2-5-2B), Ciat 19 (CT 6195-33–11-2-6B), Ciat 14 (CT 6196-33-2-9-4B), Ciat 100, Ciat 200, Ciat 300, Ciat 20G (dont l'origine a été égarée) ; la variété CIRAD 141 a été sélectionnée à partir de lignées

F₄ dans CT 8390-5-1. Parmi le matériel du CNPAF, diffusé en F₄, 3 variétés ont été sélectionnées dans le croisement Araguaia/Cuiabana=CIRAD 285, CIRAD 288, CIRAD 291, une variété dans le croisement CNA 1232-4-1-4/A8-204-1 = CIRAD 183.

Parmi les croisements naturels ou mutants, ont été sélectionnés : variété CIRAD MN1(4) (croisement repéré dans CIRAD 141) et CIRAD BSL⁽⁴⁾ (croisement repéré dans IRGA 410), d'origine du Sud du Brésil (30° de latitude

Enfin, trois variétés aromatiques ont également été triées, notamment pour leur résistance stable à Pyricularia, ce sont: Basmati 900, Basmati 1099 et Dok Mali⁽⁵⁾.

L'ensemble de ce matériel répond aux critères de sélection retenus, exceptées une forte sensibilité à la verse des variétés aromatiques, et une sensibilité élevée aux maladies des glumelles pour la variété CIRAD 183, mais révélée uniquement en conditions de savanes.

Les performances des meilleures variétés, évaluées pendant 4 ans dans les systèmes de culture des écologies de savanes et forêts de l'Ouest et du Nord, sont exposées dans les tableaux synthétiques 5, 6, 7 et 8, et permettent de mettre en évidence, les principales conclusions suivantes:

- Sur le tri variétal - En terres de vieille culture supérieure à 15 ans, par rapportau témoin Araguaia⁽⁶⁾, les variétés CIRAD 285, IRAT 216, CIAT 20, procurent des gains moyen de productivité, sur 4 ans, de 6à28%; elles répondent toutes aux critères de sélection, avec cependant une légère sensibilité à la verse pour CIRAD 285, en présence du phosphatage de fond ; cette variété est la plus rustique des trois, et obtient la meilleure moyenne de rendement des 3, avec le niveau faible de fumure NPK. Sur pâturages dégradés, les deux premières années de remise en culture, les variétes répondant le mieux aux critères de sélection et toujours supérieures au témoin Araguaia, sont CIRAD 285, CIAT 20, CIRAD 141, CIRAD BSL, CIRAD MN1, les gains moyens de rendements sur 2 ans vont de 8 à 30%. Avec phosphatage de fond, le rendement moyen de ces cultivars est voisin de 5 000 Kg/ha, aussi bien en essais, qu'en grande

culture.

Dans les forêts de l'Ouest, en terres nouvellement mises en culture et dans les forêts secondaires du Nord à palmiers Babaçus, les mêmes variétés se classent en tête, avec en plus, le cultivar CIRAD 183, qui est moins sensible aux maladies des tâches de grains dans ces écologies, qu'en zone des savanes (cerrados) humides de l'Ouest, et le cultivar CNA 6843-

Sur la pression parasitaire - Elle est toujours maximum en terres de vieille culture des savanes humides de l'Ouest qui peuvent être soumises périodiquement à des fronts frais venus du Sud : si Pyricularia oryzae et Phoma sont les deux maladies fongiques les plus préjudiciables au rendement, des champignons du sol, des genres Fusarium et Rhizoctonia, peuvent affecter également fortement la levée et obligent à un traitement fongicide préventif des semences à base de Thiabenda-zole, Thiram et Carboxyn [Séguy L., Bouzinac S. et al., 1993 (27)].

La pression fongique est toujours minimum sur sols ferrallitiques de forêts nouvellement defrichés de l'Ouest et sur sols des forêts secondaires du Nord, de meilleures potentialités (sols podzoliques de la classification brésilienne).

Sur l'influence du statut de fertilité du sol sur l'expression du rendement: les modes de gestion des sols et des cultures sont prépondérants dans la formation du rendement, en terre de vieille culture des savanes de l'Ouest [Séguy L., Bouzinac S. et al., 1993 (27), 1994 (28)]. En présence de la fumure corrective NPK soluble, les terres de vieille culture et les terres nouvellement mises en culture sur pâturage, offrent la même productivité moyenne, voisine de 3 000 Kg/ha aussi bien en essais multilocaux, qu'en grande culture, sur 4 ans.

Ce même niveau de fumure NPK, conduit à des rendements moyens supérieurs de 30%, sur sols ferrallitiques de défriche de

⁽¹⁾ Création CIRAD-CA-Irat 216 = Côte d'Ivoire, 1982; Ciwini blanc: sélection CIRAD-CA Brésil dans Ciwini [Séguy L., Bouzinac (2) Par l'intermédiaire de EMPAER - MT: structure de recherche et de vulgarisation de l'état du Mato Grosso.

⁽³⁾ Croisements réalisés à partir de : Irat 216/Irat 124//RHS 107-2-1-2-TB-ŬM ⇔ Ciat 20, Ciat 18, Ciat 19, Ciat 14 et Ngovie/ Taipei 309//Irat 216 ♥ Ciat 24 et Tox-24-6-1B//Irat 216///Tox 1768-1-2-1 ♥ CIRAD 141.

⁽⁴⁾ Croisements naturels, sélectionnés à partir de 1990 (Séguy L., Bouzinac S., Projet Sulamérica, 1989-1993).

⁽⁵⁾ Originaires d'Asie (6) Création du CNPAF/EMBRAPA.

Tableau 5

Performances variétales moyennes du riz pluvial, en essais multilocaux(1) et en grande culture, sur les frontières agricoles de l'ouest du Brésil - 1991-1994 [14 essais]

- Écologie de savanes (cerrados) sur terres exploitées pour la production continue de grains, pendant 18 ans -

Itinéraire technique		té moyenne variétaux essais)	e Variétés supérieures au témoin		ictivité enne	en grande	
	Kg/ha	% T		Kg/ha	% T	Surface/ha	Kg/ha
Semis précoce x NPK(2) (Témoin : Araguaia)	3 059	100	CIRAD 285 IRAT 216 CIAT 20	3 717 3 133 3 539	128 108 122	110	3 240 (3)
Semis précoce x phosphatage(2)	3 948	129	CIRAD 285 IRAT 216 CIAT 20	3 740 4 221 4 375	106 120 124	180	3 700 (3)

(1) Essais variétaux conduits en blocs dispersés, dans les systèmes de culture, en conditions d'exploitation réelles (600 à 1 000 m²/variété) complétés par des essais variétaux classiques en bloc de Fischer à 4 ou 5 répétitions dans les mêmes systèmes.

(2) Fumure en Kg/ha : NPK = 40N - 75 P₂O₅ - 75 K₂O ; phosphatage = 2 000 thermophosphate/3 ans + 96 K₂O + 60 à 80N annuel.

(3) Fazenda Progresso - Lucas do Rio Verde - MT - Ouest du Brésil Source: Séguy L., Bouzinac S. et al. 1991-1994 (24) - (26) - (27) - (28).

Tableau 6

Performances variétales moyennes du riz pluvial, en essais multilocaux(1) et en grande culture, sur les frontières agricoles de l'ouest du Brésil - 1991-1994 [5 essais]

- Écologie de savanes (cerrados) après pâturage dégradé exploité pendant 11 ans -

Itinéraire technique	Productivit des essais (5 es	variétaux	Variétés supérieures au témoin			Productivité 1992/9 en grande culture	
	Kg/ha	% T	4.0000000000000000000000000000000000000	Kg/ha	% T	Surface/ha	Kg/ha
Semis précoce x NPK(2) (Témoin : Araguaia)	2 990	100	CIRAD 285 CIAT 20 CIRAD 141 CIRAD BSL CIRAD MN1	3 235 3 074 3 435 3 578 3 616	116 110 123 129 130	30	3 371 (4)
Semis précoce x phosphatage(2	2) 4 964	164	CIRAD 285 IRAT 216 CIAT 20 CIRAD 141 CIRAD BSL CIRAD MN1	5 105 4 989 5 148 5 376 5 328 5 040	108 106 109 114 113 107	69 237 30	3 822 (3) 4 685 (3) 4 997 (4)

⁽¹⁾ Essais variétaux conduits en blocs dispersés, dans les systèmes de culture, en conditions d'exploitation réelles (600 à 1 000 m²/variété) complétés par des essais variétaux classiques en bloc de Fischer à 4 ou 5 répétitions dans les mêmes systèmes.

(2) Fumure en Kg/ha: $NPK = 40N - 75 P_9O_5 - 75 K_9O$; phosphatage = 2 000 thermophosphate/3 ans + 96 K₂O + 60 à 80N annuel.

(3) Fazenda Progresso - Lucas do Rio Verde - MT - Ouest du Brésil

(4) Cooperlucas - Lucas do Rio Verde - MT - Ouest du Brésil

Source: Séguy L., Bouzinac S. et al. 1991-1994 (24) - (26) - (27) - (28).

Tableau 7

Performances variétales moyennes du riz pluvial, en essais multilocaux(1) et en grande culture, sur les frontières agricoles de l'ouest du Brésil - 1991-1994 [11 essais]

- Ecologie de forêts, 1 à 3 ans après défriche -

Itinéraire technique	Productivité des essais (11 es	variétaux	Variétés supérieures au témoin	Productivité moyenne		Productivité1992/9 en grande culture	
	Kg/ha	% T		Kg/ha	% T	Surface(ha)	Kg/ha
Semis précoce x NPK(2) (Témoin : Araguaia)	3 881	~	CIRAD 285 CIRAD 288 CIRAD 291 CIRAD 183 CIAT 20	3 973 4 229 4 335 3 926 4 520	125 133 136 123 142		
Semis tardif x NPK(2) (Témoin : Irat 216)	3 737	100	CIAT 20 CNA 6843-1 CIRAD 141 CIRAD MN1 CIRAD BSL	3 777 3 639 3 774 3 982 4 691	116 112 116 122 144	188 40 10	4 436 (3) 4 500 (3) 4 850 (3)
Semis précoce x phosphatage(2	3) 4658	125	CIAT 20 CIRAD 141 CIRAD MN1 CIRAD BSL	4 629 4 746 5 856 5 732	114 117 144 141		ì

(1) Essais variétaux conduits en blocs dispersés, dans les systèmes de culture, en conditions d'exploitation réelles (600 à 1 000 m²/variété) complétés par des essais variétaux classiques en bloc de Fischer à 4 ou 5 répétitions dans les mêmes systèmes.

(2) Fumure en Kg/ha : NPK = $40N - 75 P_2O_5 - 75 K_2O$; phosphatage = 2 000 thermophosphate/3 ans + $96 K_2O + 60$ à 80N annuel.

(3) Sinop - MT - Ouest du Brésil

Source: Séguy L., Bouzinac S. et al. 1991-1994 (24) - (26) - (27) - (28).

Tableau 8

Performances variétales moyennes du riz pluvial, en essais multilocaux(1) et en grande culture, sur les frontières agricoles de l'ouest du Brésil - 1991-1994 [4 essais]

- Écologie de forêts secondaires à palmiers babaçus - Terres mises en culture depuis 5 ans -

Itinéraire technique	Productivité moyenne des essais variétaux	Variétés supérieures au témoin	Produc		Productivite en grande	
	Kg/ha		Kg/ha	% T	Surface/ha	Kg/ha
		CIAT 20	4 103	112		
		CIRAD 183	3 842	105	15	4 363 (3)
Semis précoce x NPK(2)	4 022	CIRAD 141	5 423	149		35. 12
(Témoin : Irat 216)		CIRAD BSL	4 676	128	10	6 177 (3)
THE STATE CONTRACTOR CONTRACTOR STATE STATE AND STATE OF THE TOTAL STA		CIRAD MN1	3 972	109		

(1) Essais variétaux conduits en blocs dispersés, dans les systèmes de culture, en conditions d'exploitation réelles (600 à 1 000 m²/variété) complétés par des essais variétaux classiques en bloc de Fischer à 4 ou 5 répétitions dans les mêmes systèmes.

(2) Fumure en Kg/ha: NPK = 40N - 75 P₂O₅ - 75 K₂O; phosphatage = 2 000 thermophosphate/3 ans + 96 K₂O + 60 à 80N annuel.

(3) Projet Sulanor - Miguel Alves - PI (Nord du Brésil)

Source: Séguy L., Bouzinac S. et al. Rapports annuels - 1991 à 1993 - Doc. internes CIRAD-CA.

Tableau 9

Intervalles de réaction des meilleurs cultivars aux principales maladies et à la verse dans 34 essais variétaux multilocaux sur 4 ans - Mato Grosso, Maranhão, Piauí - 1990-1994

	Name of the last		Sava	mes (cer	rrados) O	uest						Forêt	s Ouest				For	êts séc	ondaires N	ord
V			NPK			PHOS	PHATAGE				NPK		2.5	PHOS	PHATAGE				NPK	
Variétés et	Pyricula				Pyricula				Pyricula	riose			Pyricula	riose			Pyricula	riose		
géniteurs	Foliaire (1)	Cou (2)	Tâches de grains (3)	Verse (4)	Foliaire (1)	Cou (2)	Tâches de grains (3)	Verse (4)	Foliaire (1)	Cou (2)	Tâches de grains (3)	Verse (4)	Foliaire (1)	Cou (2)	Tâches de grains (3)	Verse (4)	Foliaire (1)	Cou (2)	Tâches de grains (3)	
Araguaia	1-4	0-1	5-10	0-2	1	0	0-5	8-10	1-2	0-1	2-6	2-4	1	0	1-3	8-10	1-2	0-1	0-2	3-5
Irat 216	4-7	0-1	3-12	0	1-3	0	2-3	0	2-4	0-1	2-5	0	1	0	1-4	0	2-4	0-1	0-5	0
Cirad 285	1-2	0	2-10	0	1-2	0	1-5	2-5	1-2	0-1	1-4	0-2	1	0	1-3	4-6	1-2	0-1	0-3	1-4
Ciat 20	1-2	0-1	8-20	0	1-2	0	5-10	0	1-2	0-1	2-10	0	1	0	2-6	0-1	1-2	0-1	2-5	0
Cirad 141	1-2	0	3-7	0	1-2	0	1-5	0	1-2	0-1	2-5	0	1	0	1-3	0-1	1-2	0-1	0-2	0
Cirad MN1	1-2	0-1	2-10	0	1-2	0	1-7	0	1-2	0-1	2-7	0	1	0	1-6	0	1-2	0-1	2-4	0
Cirad BSL	2-4	0-1	15-40	0	1-2	0	5-20	0	1-2	0-1	3-15	0	1	0	2-10	0	1-2	0-1	2-6	0
Cirad 183	1-3	0	30-80	0	1	0	10-40	0	1-2	0-1	2-15	0	1	0	0-3	0	1-2	0-1	0-3	0
Ciat 18	1-2	0-2	6-16	0	1	0	2-6	0	1-2	0-1	1-4	0	1	0	1-3	0-2	1-2	0-1	1-4	0
Ciat 24	1-2	0-1	5-15	0	1	0	1-7	0	1-2	0-1	1-3	0	1	0	0-3	0-2	1-2	0-1	0-2	0
Ciat 14	1-2	0-1	2-12	0	1	0	2-5	0	1-2	0-1	1-2	0	1	0	0-3	0	1-2	0-1	0-2	0
Ciat 19	1-2	0-1	3-14	0	1	0	2-4	0	1-2	0-1	1-2	0	1	0	0-5	0-3	1-2	0-1	0-3	0
Ciat 100	1-2	0-1	2-10	0	1	0	1-5	0	1-2	0-1	2-6	0	1	0	1-4	0-2	1-2	0-1	1-4	0
Ciat 300	1-2	0-1	3-11	0	1	0	2-7	0	1-2	0-1	2-7	0	1	0	2-5	0-1	1-2	0-1	1-5	0
Cna 6843-1	1-2	0-1	2-7	0	1	0	1-5	0	1-2	0-1	2-4	0	1	0	0-3	1-4	1-2	0-1	0-2	0
Ciwini blanc	1-2	0-1	30-70	0	1	0	10-20	0	1-2	0-1	15-25	0	1	0	5-10	0	1-2	0-1	3-6	0
Basmati 900	1-2	0-1	15-30	1-5	1	0	5-15	10	1-2	0-1	6-17	2-4	1	0	3-7	8-10	1-2	0-1	2-5	7-10
Diwoni	1-2	0-1	5-15	0	1	0	3-7	0	1-2	0-1	3-8	0	1	0	2-5	0	1-2	0-1	0-3	0
Dok Mali	1-2	0-1	2-10	3	1	0	1-6	10	1-2	0-1	2-6	0-2	1	0	2-6	6-10	1-2	0-1	1-2	6-10

⁽¹⁾ Echelle CIRAD-CA - 0 = Résistance totale, 9 = 100 % surface foliaire détruite - (Pyricularia oryzae)

⁽²⁾ Echelle 0-10 - 1 = 10% cous malades, 10 = 100% - (Pyricularia oryzae)
(3) % de grains tachés, sur 10 panicules - (Phoma sorghina, Helminthosporium oryzae, Cercospora oryzae, etc).
(4) Echelle 0 = sans verse, 1 = 10% de verse, 10 = 100%.

Source: Séguy L., Bouzinac S. et al., 1990-1995.

forêts de l'Ouest et sur les sols des forêts secondaires du Nord.

Ce résultat est à relier au statut de fertilité initial des sols ferrallitiques de forêt sur défriche, qui est nettement supérieur à celui des sols de vieille culture et pâturage dégradé, notamment en matière organique facilement biodégradable (tableau 10).

En terre de vieille culture, deux ans de pâturage à Panicum maximum(1) suffisent à reconstituer un stock de matière organique important dans l'horizon 0-10 cm.

En présence du phosphatage de fond au thermophosphate, le niveau moyen de productivité des meilleures variétés, est toujours le plus élevé, le plus stable, en toutes écologies: les rendements moyens reproductibles sont, voisins de 4 000 Kg/ha en terre de vieille culture des savanes de l'Ouest, compris entre 4 600 et 5 000 Kg/ ha sur pâturage et forêts ; le thermophosphate permet d'augmenter l'efficacité du stock de matière organique à turn-over rapide, aussi bien en semis précoce que tardif [Séguy L., Bouzinac S. et al. 1993 (27), 1994 (28)].

En terre de vieille culture, la productivité du riz, est d'abord conditionnée par le mode de gestion du sol et des cultures (rotations, successions annuelles à deux cultures x modes de travail du sol⁽²⁾ comme le montrent les résultats agro-économiques exposés dans le tableau 11.

En toutes situations de profil cultural et écologies, le thermophosphate permetnon seulement d'exprimer le potentiel variétal dans les meilleurs systèmes, mais de réduire significativement l'incidence des maladies cryptogamiques, en particulier de Pyricularia oryzae, et des tâches de grains (tableau 9) - [Séguy L., Bouzinac S. et al. 1989 (20)]. Ces effets positifs du thermophos-phate⁽³⁾ sur la culture de riz pluvial, sont dûs à plusieurs qualités complémentaires : finesse du produit qui agit très rapidement sur la neutralisation de l'acidité, stimule immédiatement la vie biologique, excellent équilibre

Tableau 10

Caractéristiques chimiques de l'horizon 0-10 cm, des sols ferrallitiques rougejaunes sous végétation naturelle et sous culture, de l'Ouest brésilien - 1994

Profil	Profondeur		H	M.O.		me	eq./1	00 ml		V	P
	(cm)	CaCl	eau	%	Ca	Mg	AI	K	CEC	(%)	(ppm) (1)
Savane vierge (2)	0-5	4,1	4,7	(3,3)	0,2	0,1	1,2	0,15	5,6	7,9	1,3
	5-10	4,0	4,6	2,4	0,2	0,1	1,0	0,08	7,6	5,0	1,3
Savane (2) après	0-5	4,7	5,3	2,0	1,5	0,4	0,1	0,16	6,3	32,9	18,6
18 ans de culture	5-10	4,7	5,4	2,0	1,2	0,3		0,15	5,9	28,2	4,5
Savane après (2)	Litière	4,9	5,5	4,0	2,2	0,6	0,1	0.23	6,4	47,1	6,3
16 ans culture +	0-5	4,7	5,3	2,6	1,8	0,5	0,2	0,22	6.7	37,5	6,2
2 ans Panicum	5-10	4,6	5,2	2,1	1,3	0,4	0,2	0,08	6,5	25,4	5,3
Savane(3) pâturage	e Litière	4,7	5,3	4,2	1,4	0,4	0,1	0,40	6,4	34,3	1,3
dégradé (11 ans)	0-5	4,3	4,9	2,8	0,7	0,3	0,3	0.15	6,9	16,5	1,0
	5-10	4,3	4,9	2,5	0,5	0,2	0,5	0,10	6,6	12,1	1,0
Savane(3) pâturage	e 0-5	5,0	5,6	2,4	2,1	0,6	0,1	0,16	6,0	48,0	5,6
11 ans - 1º année ri x phosphatage	z 5-10	4,5	5,1	2,3	0,8	0,3	0,1	0,10	6,4	18,7	1,3
Forêt(4) vierge	0-5	5,4	6,0	7,3	2,6	0,7	_	0,07	5,4	62,8	1,0
(oxydé)	5-10	4,2	4,8	3,7	0,3	0,1	1,2	0,05	6,8	6,6	1,3
Forêt (4)	0-5	5,4	6,0	2,4	2,9	0,8	-	0,12	6,0	50,2	8,3
2º année soja x phosphatage	5-10	5,0	5,6	2,1	2,1	237 0 730	0,1	0,07		46,8	2,6

- (1) Méthode Mehlich (seuil de déficience fixé à 6 ppm, sur 0-20 cm).
- (2) Fazenda Progresso (3) Cooperlucas Lucas do Rio Verde

(4) Sinop - MT (*) Source : Séguy L., Bouzinac et al., 1994 - centre nord Mato Grosso.

minéral (macro et micro éléments), forme non soluble qui doit passer par un processus progressif de bio-solubilisation, donc évite les deséquilibres nutrionnels fréquents dûs aux fumures solubles [Séguy L., Bouzinac S. et al., 1989 (20)] et, enfin, teneur élevée de 25% en SiO₉, dont les effets protecteurs sur les maladies cryptogamiques du riz sont connus [Winslow M. D., 1992 (34)].

Sur les records de productivité - Ils ont tous été obtenus dans les meilleurs systèmes de culture avec phosphatage de fond, avec les cultivars Ciat 20, Cirad MN1, Cirad BSLquiontdépasséfréquemment 6000 Kg/ha, avec un maximum à 8 000 Kg/ha avec Cirad MN1, sur défriche de forêt (cf. tableau 12).

Sur la réponse variétale à une sècheresse sévère-Cette situation de stress hydrique est rare, mais peut survenir sur semis tardif de décembre, en zone de savanes à l'Ouest et de forêts secondaires au Nord; dans ce cas, la réaction

variétale à ce problème, exposée dans le tableau 13 montre que le cultivar Cirad 141 est le cultivar le plus résistant à la sècheresse, suivi de Cirad BSL et Cirad 291, dans la zone des savanes de l'Ouest.

Sur les performances économiques de la culture, avec les nouveaux cultivars à belle qualité de grain -Elles sont étroitement dépendantes des coûts de production et des prix payés aux producteurs, donc de la politique agricole (fig. 3 et 4). Sur la période considérée de 1990 à 1994 dans les savanes et forêts de l'Ouest, les coûts de production oscillent entre 420 et 550 US\$/ha, en fonction de la stratégie de correction du sol, et les marges nettes moyennes, varient entre 140 et 185 US\$/ha/ an, sur les meilleures rotations de cultures [Séguy L., Bouzinac S. et al., 1993 (27), 1994 (28)].

Sur les rendements à l'usinage et le comportement à la cuisson des meilleurs cultivars-Les rendements moyensàl'usinagesont excellents et exposés dans le tableau 14; il

⁽¹⁾ Systèmes intégrés "production de grains-élevage" crées par le CIRAD-CA. Le système racinaire du Panicum colonise le sol sur plus de 2,50 m de profondeur. Ce pâturage en rotation avec les grains, supporte de 4 à 6 UGB/ha en saison des pluies et 2,2 UGB/ ha en saison sèche.

⁽²⁾ À signaler la mise au point récente des techniques de semis direct sur riz pluvial avec la succession annuelle Crotalaire + riz et son inverse (Séguy L., Bouzinac S. et al. 1994).

⁽³⁾ Effets similaires sur la culture de riz, au Vietnam, aussi bien sur sols ferrallitiques rouges et pluviométrie élevée, que sur les sols sulfatés acides du delta [Husson O., 1994 (4)].

Tableau 11 Influence des interactions niveaux de fumure x rotations sur la productivité du riz pluvial et leurs conséquences économiques

Formules de		Productivité			Coûts de prod	duction (\$/ha)	Marges nette	s (\$/ha)
fumures (Kg/ha)	Après	z + sorgho oja+sorgho	Aprèss	oja+sorgho III oja	Après riz + sorgho I soja+sorgho	Après soja+sorgho III	Après riz + sorgho I soja+sorgho	Après soja + sorgho III
	Riz	Sorgho	Riz	Sorgho				,.—
2 Fumure NPK (TR) (1) recommandée sans calcaire	2 108	(501)	5 308	(614)	444	508	- 141	+ 324
5) T1 + 1 500 calcaire (2) /3 ans	2 205	(727)	5 308	(880)	421	485	- 82	+ 370
6) T1 + 3 000 calcaire (2) /3 ans	2 416	(636)	5 255	(795)	435	493	- 69	+ 346
7) T2 + 1 500 calcaire (3) /3 ans	2 170	(615)	5 523	(1 020)	482	553	- 168	+ 334
12) 1 000 thermophosphate (4) /3 ans	2 293	(645)	5 201	(1 134)	449	511	- 106	+ 337
14) 1 500 thermophosphate (4) /3 ans	2 564	(786)	5 469	(1 279)	491	553	- 102	+ 342
(4) 1 500 thermophosphate (4) /2 ans	3 489	(1 836)	6 622	(2 112)	596	661	- 02	+ 462
17) 1 500 superphosphate simple (5) /3 ans	2 268	(879)	5 227	(1 160)	485	547	- 137	+ 300
18 1º année 500 thermophosphate + T ₁ , (1) ensuite formule mixte (6)	2 194	(654)	5 142	(924)	446	507	-118	+ 319
500 thermophosphate granulé, sous la ligne, annuel	2 379	(909)	5 270	(1 428)	475	536	- 104	+ 339
21) 500 superphosphate (5) simple, sous la ligne, annuel	2 268	(760)	5 193	(1 209)	471	533	- 129	+ 315
Moyennes	2 396	(813)	5 411	(1 141)	472	535	- 105	+ 344
Effet rotation	(100)		(226)		2	1 - 1		

^(*) Riz : cultivar CIAT 20

^(*) Témoin monoculture soja x offset sur la même période ⇒ Productivité = 1 635 Kg/ha; Coûts de production = 315 \$/ha; Marges nettes = -55 \$/ha. Source: Séguy L., Bouzinac S. et al., 1993 - Fazenda Progresso - Lucas do Rio Verde - Mato Grosso

 $[\]begin{array}{l} \text{(1)} \ T_{\text{R}} \left\{ \begin{array}{l} \text{Soja} = 400 \ \text{Kg/ha} \ 0\text{-}20\text{-}20 + \text{oligos} \\ \text{Riz} = 400 \ \text{Kg/ha} \ 4\text{-}20\text{-}20 + \text{oligos} \\ \text{Soja} = 250 \ \text{Kg/ha} \ 0\text{-}20\text{-}20 + \text{oligos} \\ \text{Riz} = 250 \ \text{Kg/ha} \ 4\text{-}20\text{-}20 + \text{oligos} \\ \text{Riz} = 250 \ \text{Kg/ha} \ 4\text{-}20\text{-}20 + \text{oligos} \\ \text{Soja} = 500 \ \text{Kg/ha} \ 4\text{-}20\text{-}20 + \text{oligos} \\ \text{Riz} = 500 \ \text{Kg/ha} \ 4\text{-}20\text{-}20 + \text{oligos} \\ \end{array} \right.$

⁽⁴⁾ Sur fumure thermophosphate = 600 Kg/ha de gypse/2 ans et 100 Kg/ha KCl annuellement (+ N au semis pour riz)
(5) Sur fumure superphosphate simple = 100 Kg/ha KCl annuellement (+ N au semis pour riz)
(6) Mélange par hectare
Sur riz : 200 Kg/ha 4-20-20 + 200 Kg thermophosphate granulé + 70 Kg KCl + 20 oligo-éléments.

Sur soja : 200 Kg/ha 2-20-20 + 200 Kg/ha superphosphate simple + 80 KCl + 20 Kg oligo-éléments
(7) Toutes les cultures pratiquées en semis direct, excepté le riz pluvial qui est précédé d'une scarification profonde qui laisse plus de 50% des résidus de récolte au dessus du sol.

montre que les meilleurs rendements en grains entiers sont obtenus, en région Nord, avec les cultivars Ciat 20, Cirad BSL, Cirad 141, avec 60% de grains entiers; en zone des savanes humides de l'Ouest, le phosphatage améliore sensiblement le rendement en grains entiers de la plupart des cultivars, et les meilleurs sont, dans l'ordre Cirad 141, Irat 216 et Cirad MN1, le pire est toujours Ciwini Blanc(1) (en raison de sa sensibilité aux tâches de grains).

Le comportement des meilleurs variétés crées, comparé à celui de la variété Blue Belle qui est une bonne référence en matière de riz de qualité dans le Sud, est exposé

dans le tableau 15.

Le cultivar Cirad BSL est équivalent à Blue Belle. Ciwini Blanc (géniteur) fait la meilleure synthèse des qualités requises et les variétés Cirad 285, Ciat 20, Cirad 141 ont des comportements à la cuisson légèrement inférieurs à ces 2 variétés mais qui restent très acceptables.

Deuxième étape(2) en cours : améliorer encore la productivité et la qualité de grain, la diversifier -

Cette étape, entreprise depuis 1992, vise la création de cultivars de cycle courts, à très belle qualité de grains (long fin et très long fin, aromatique ou non) pour tirer parti au maximum des prix du marché qui sont toujours les plus élevés en janvier, avant la récolte de Rio Grande do Sul, et également pour améliorer les performances agro-économiques des successions annuelles: riz + maïs, riz + sorgho, mil, riz + coton, crotalaire + riz et son inverse.

Un second objectif est visé : la création de cycles moyens, à très haute productivité, supérieure à 6-7 tonnes/ha, et à grain très long fin et long fin, aromatiques ou non.

Ces travaux d'amélioration variétale sont conduits par la voie classique de la sélection généalogique, dans les systèmes de culture, et par la voie de production d'hybrides(3).

Sonten cours d'exploitation par la voie classique : 34 croisements

	Les reco	ords de productivit	é - 1992/95	
Écologie (1)	Année	Itinéraire technique	Variétés	Productivité en Kg/ha
Forêt (Ouest)	1992/93	Phosphatage x	CIRAD MN1	8 000
		Semis tardif	CIRAD BSL	6 020
	1993/94	Phosphatage x Semis précoce	CIRAD BSL	7 018
Frontière forêt/savane (Ouest)	1993/94	Phosphatage x Semis précoce	CIRAD BSL	6 600
	1992/93	Terre vieille (17 ans culture) Phosphatage X Semis précoce	CIAT 20	6 622
Savane (cerrados) Ouest	1993/94	Terre neuve Phosphatage x Semis précoce	CIAT 20	6 432
Forêt secondaire à palmier babaçus	1993	Phosphatage x	CIRAD BSL	6 414
(Nord)		Semis précoce	CIRAD 141	6 378

⁽¹⁾⁻ Forêt Ouest: Fazenda de Mr. Jorge Kamitani - Sinop - MT - Frontière forêt/savane Ouest: Coopérative Cooasol - Sorriso - MT - Savane Ouest: Fazenda Progresso - Lucas do Rio Verde - MT - Forêt secondaire Nord: Projet Sulamérica - Miguel Alves - PI (*) Source: Séguy L., Bouzinac S. et al. 1992, 1995.

Tableau 13

Tests variétaux riz pluvial, conduits en conditions d'exploitation réelles -Mato Grosso, 1992-93.

Date de semis tardive - Écologie des cerrados humides en conditions de très sévère sécheresse

	Nova M (Fazenda Dr.		Lucas do Rio Verde (Coopérative Cooperlucas)		
Variété	Productivité (Kg/ha)	% T	Productivité (Kg/ha)		
Araguaia (T)	1 122	100	0		
Caiapó	996	89	0		
CNA 7066	1 120	99	0		
CIAT 20	1 500	134	0		
CIRAD 291	1 752	156	0		
IRAT 216	1 248	111	0		
CIRAD 285 *	1 374	122	0		
CIRAD 288 *	1 500	134	0		
Super IRAT	1 410	126	0		
CIRAD BSL *	1 884	168	0		
CIRAD MN1 *	618	55	0		
CIRAD MN2A *	672	60	0		
CIRAD MN2B *	1 092	97	0		
CIRAD 141 *	2 544	227	790		

^{*} Sélections CIRAD-CA Brésil - 1 000 m2/variété - Collection testée (1) 34 mm sur 34 jours à Nova Mutum, en pleine phase de montaison. 9 mm sur 20 jours à Lucas do Rio Verde, en pleine phase de montaison. Source: Séguy L., Bouzinac S. et al., 1993.

croisements à la demande et participé à la sélection, en Guyane et sur le dispositif Brésil.

(3) Exploitation de la stérilité mâle génocytoplasmique.

⁽¹⁾ CIWINI BLANC, sélection CIRAD-CA dans CIWINI, est un géniteur excellent à qualité de grain exceptionnelle très long fin, de cycle court, très important pour élargir la base génétique de création variétale et pour l'objectif cycle court de belle qualité de grain- (le croisement CIWINI x CIRAD 285, en cours d'exploitation, est exemplaire à cet égard).

(2) Cette étape a été entreprise dès 1992, avec l'appui de Mr. James Taillebois, généticien du CIRAD-CA, qui a réalisé les projections à la demande et participé à la sélection, en Curane et sur le dispositif Brásil.

réalisés en 1992 ; 43 en 1993 ; 34 en 1994, soit au total plus de 5 000 lignées, actuellement.

Les meilleurs croisements qui correspondent aux critères de sélection retenus sont : Ciwini x Ciat 20, Ciwini x Irat 216, Ciwini x Cirad 285 (dans ce croisement, certaines lignées ont des grains après usinage, supérieurs à 1 cm), Basmati x Irat 216, Irat 216 x Cirad 285, Diwani x Irat 216, Diwani x Basmati. Les photos 1 et 2, montrent les progrès réalisés sur le format de grain entre 1989 et 1995.

Les premières lignées F₇ vont entrer en collection testées dans les systèmes de culture en 1996.

Lepremier hybride obtenu pour

Tableau 14

Rendements moyens à l'usinage, des meilleures variétés

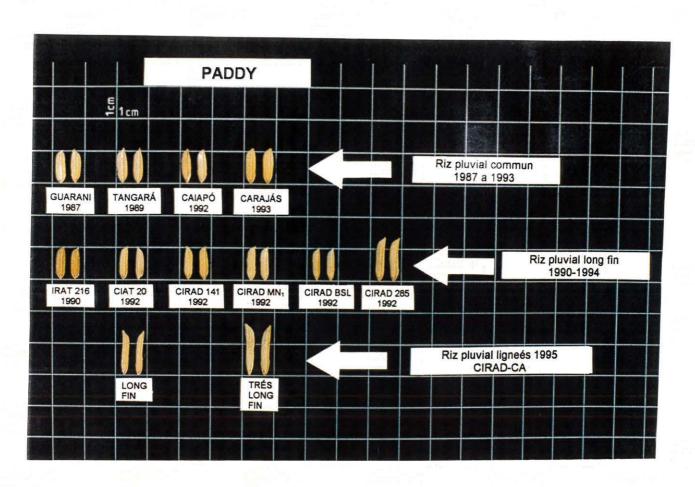
Pourcentage de grains entiers en %

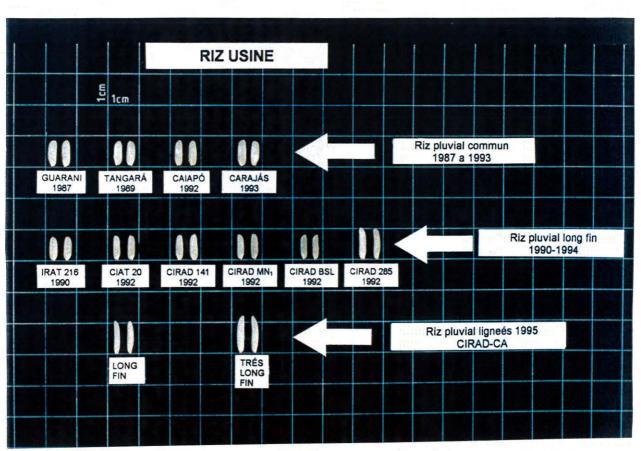
	Zor	ne des savanes de l'Ouest	Zone des forêts secondair du Nord		
Cultivar	NPK	Thermophosphate	Thermophosphate		
CIRAD 183	*	<u> </u>	57,0		
IRAT 216	53,5	56,5	57,5		
CIRAD BSL	44,5	46,2	60,5		
CIRAD 141	55,2	58,0	60,5		
CIAT 20	50,5	50,7	63,0		
CIRAD MN1	51,75	53,0	59,0		
CIRAD 285	32,3	52,2	56,0		
CIWINI BLANC	28,5	24,5	53,5		

Source : Séguy L., Bouzinac S. et al., 1993, 1994 - Projets Sulamérica Piauí et Cooperlucas - MT

Tableau 15 - Propriétés physico-chimiques de 9 variétés intéressantes de riz usiné² - 1992-94

Variété ¹	Longueur L (mm)	Largeur W (mm)	L/W	Translucidité (%)	Taux d'amylose (% matière sèche
Ciwini blanc	8,43	2,02	4,17	99	21,6
Cirad 141	6,53	2,19	2,98	94	14,8
Cirad 285	7,0	2,29	3,06	50	19,5
Ciat 20	6,02	2,10	2,85	96	15,0
Metica	6,75	2,20	3,07	40	24,0
Mana 1	7,56	2,15	3,51	50	22,2
Cirad BSL	7,00	2,09	3,34	100	26,0
OBQI	8,09	2,24	3,61	80	22,7
Cirad 183	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	6-10-11-11-11-11-11-11-11-11-11-11-11-11-	10 E 10 C		25.7


			water the second	20,1	
	Qualité à la cuissor	n, pendant 17 minutes, dan	s un excès d'eau		
Variété ¹	Temps idéal de cuisson (minutes, secondes)	de cuisson (%)		Recouvrement de l'elasticité %	
Ciwini blanc	18'30''	312 (a)	43,0 (cde)	57,7 (a)	
Cirad 141	22'	280 (b)	28,9 (ef)	26,2 (b)	
Cirad 285	22'	279 (Ъ́)	32,8 (ef)	38,6 (b)	
Ciat 20	21'	298 (ab)	23,2 (f)	21,6 (b)	
Metica	18'	316 (a)	49,7 (cd)	22,7 (b)	
Mana 1	19'	292 (ab)	52,8 (bc)	20,9 (b)	
Cirad BSL	20'30''	305 (a)	63,5 (ab)	64,3 (a)	
OBOI	16'30''	278 (b)	68,7 (a)	46,5 (b)	
Cirad 183	19'	308 (a)	44,4 (cde)	57.3 (b)	


Qualité à la cuisson, da	ıns l'eau,	après f	riture dans	l'huille	pendant 5 minutes
--------------------------	------------	---------	-------------	----------	-------------------

Variété ¹ Ciwini blanc	Temps idéal de cuisson (minutes, secondes)	Fermeté³ (%)		Recouvrement ³ de l'elasticité (%)			Aptitude à coller (g. cm)
	27'30''	(71,4) 64,5	(a)	(63,)	57,7	(a)	0
Cirad 141	29'30'''	(43,0) 41,3		(25,5)	26,2	(b)	0,9
Cirad 285	27'30''	(61,6) 54,6	(ab)	(46,3)	38,6	(b)	0,3
Ciat 20	21'	(46,4) 37,8	(c)	(28,0)	21,6	(b)	0,7
Metica	27'30''	(31,0) 35,9		(16,5)	22,7	(b)	0,59
Mana 1	25'30''	(37,3) 38,5	(c)	(19,9)	20,9	(b)	1,04
Cirad BSL	24'30''	(70,2) 64,3		(62,4)	64,3	(a)	,,,,
OBOI	23'	(61,6) 55,7		(46,5)	37,4	(b)	0,66
Cirad 183	25'	(55,3) 44,0		(46,0)	31,3	(b)	0,52
Blue Belle	26'	(67,6) 56,3		(69,2)	57,3	(a)	0,36

Les traitements suivis d'une même lettre ne sont pas significativement differents (au seuil 5%)

- 1. BSL e OBQI sont comparables à BLUE BELLE et sont d'excellente qualité. CIWINI BRANCO fait la meilleure synthèse (format, qualité à la cuisson).
- 2. Analyses realisées au laboratoire de technologie du CIRAD-CA de Montpellier France B. PONS, J. FAURE - Tel.: 67612350 et Fax 67522094
- 3. Entre parenthèses = après une nuit de repos.

les conditions pluviales de la zone des savanes et forêts humides des fronts pionniers de l'Ouest, a produit 7110 Kg/ha, sur défriche de forêt, en 1995 (Sinop-MT).

Pour la fabrication d'hybrides pour les conditions pluviales, plus de 50 variétés restauratrices ont déjà été identifiées ; de même, diverses variétés résistantes à la Pyricularioseet Phoma, sont en cours de stérilisation pour l'obtention de mâles stériles adaptés aux conditions pluviales.

V-CONCLUSIONS

La zone tropicale humide des sols ferrallitiques acides de savanes (cerrados), qui offre des conditions climatiques d'élection pour la culture du riz pluvial, occupe encore des millions d'hectares non exploités en Amérique Latine et représente donc un vaste réservoir alimentaire pour la population croissante du 21º siècle. Au Brésil, plus de 1,5 millions d'hectares sont cultivés en riz pluvial, dans ces régions très favorables à cette culture, à l'Ouest et au Nord. Si les systèmes traditionnels de production, à faible productivité, dominent encore largement, avec les systèmes itinérants du Nord sans intrants, riziculture d'ouverture mécanisée des savanes, à faible niveau d'intrants à l'Ouest, le CIRAD-CA et ses partenaires brésiliens de la recherche et du développementontmontré, entre 1978 et 1995, que le riz pluvial peut être une culture productive et lucrative de stabilisation des systèmes de cultures aussi bien en culture manuelle au Nord que sur les fronts pionniers mécanisés de l'Ouest. Néanmoins, jusqu'en 1990, cette riziculture pluviale améliorée, offrait une qualité de produit médiocre, rémunérée, en tous cas, non compétitive des riz long fins irrigués du Sud. A partir de 1990, la diffusion spontanée de la variété Irat 216 sur les fronts pionniers (nommée Rio Verde par le CNPAF-EMBRAPA), à grain long fin, associée à la mise au point concomitante de systèmes de culture lucratifs en milieu réel à base de riz et soja, ouvrait définitivement la voie à la production de riz

pluvial de qualité, comme partenaire économique à la hauteur de la culture de soja, indispensable pour la stabilisation des systèmes de culture des fronts pionniers. En même temps, dans les états du centre ouest, le CNPAF-EMBRAPA développait un système de réforme des pâturages dégradés avec le rizpluvial, (appelé "Barreirão"), à l'usage des éleveurs, qui a permis d'assurer sa promotion et sa diffusion sur une très vaste échelle dans le Brésil central.

Apartir de 1990, le CIRAD-CA a poursuivi, sur les fronts pionniers de l'Ouest et du Nord Brésil, ses travaux d'amélioration variétale visant la progression, à la fois de la productivité et de la qualité de grain, en intégrant la création variétale dans les systèmes de culture. De nouvelles variétés, supérieures à Irat 216, ont été sélectionnées: Cirad 285, Ciat 20 (lancée par le CNPAF-EMBRAPA sous le nom de Progresso) Cirad 141, Cirad MN1, Cirad BSL; ces variétés, dans les meilleurs systèmes de culture, dépassent 5 000 Kg/ha avec des pointes de productivité supérieures à 6 000 Kg/ha, en conditions d'exploitation réelles, et présentent des qualités de grain proches ou équivalentes à celles des meilleures variétés irriguées du Sud (Cirad BSL, Cirad 183, Cirad MN1, Cirad 141, Cirad 285).

La recherche CIRAD-CA a démontré, dans le même temps, que ce sont d'abord les modes de gestion des sols et des cultures qui sont prépondérants l'obtention des productivités les plus élevées et les plus stables, à moindre coût. Ainsi, les systèmes qui associent à la fois, travail profond du sol (labour, scarification) aux rotations pourvoyeuses de fortes biomasses facilement biodégradables et au phosphatage de fond au thermophosphate, garantissent des productivités entre 4 500 et 5 500 Kg/ha de riz en grande culture, avec un excellent contrôle de la pression fongique. Cette production de riz peut être suivie en succession (et semis direct) par une production de 1500 à 2500 Kg/ha de sorgho ou mil, sans intrants; c'est ce fort volume de paille annuelle qui

garantit l'année suivante des productivités de soja comprises entre 3 500 et 4 200 Kg/ha. Plus récemment, la recherche CIRAD-CA a également démontré la nécessité d'adopter les techniques de semis direct de manière continue, qui sont les seules à assurer une protection totale des sols contre l'érosion, une gestion conservatrice efficace du statut organique du sol, et procurent les rendements les plus élevés en soja; ces exigences agronomiques incontournables pour une gestion durable, et à moindre coût, de la ressource sol, ont conduit le CIRAD-CA à mettre au point les systèmes de semis direct du riz pluvial, grâce aux successions annuelles crotalaire + riz, et son inverse [Séguy L., Bouzinac S., et al. 1994 (28)]

Le CIRAD-CA a également identifié et sélectionné de nouvelles sources de grains très long fins pour améliorer encore la qualité de grain vers le type très long fin, aromatique ou non; il dispose maintenant d'un pool de génotypes à phénotypes et performances proches du meilleur matériel irrigué, à résistance stable aux principales maladies en conditions de culture pluviales pour l'Ouest et le Nord Brésil. Ce pool génétique(1) comprend, à la fois des variétés d'origine Surinamienne et Guyannaise (niveau Equateur) du matériel originaire de 30° de latitude Sud, et d'Asie, soit une base génétique, large, pour poursuivre la création variétale pour les zones favorisées, soit par la voie classique, soit par la voie de production d'hybrides.

Compte tenu de la très large représentativité des sols ferrallitiques de la zone tropicale humide qui occupent plus de 63% de la surface des sols acides, il parait important, aujourd'hui, de diffuser très largement les variétés mises au point, ainsi que les systèmes qui les valorisent. De même, la méthode de création variétale intégrant le processus de sélection, pour, et dans les systèmes de cultures, avec et chez les producteurs mérite certainement une plus large audience dans le monde de la recherche scientifique, pour mieux comprendre, intégrer, maitriser

⁽¹⁾ Certains croisements se comportent remarquablement en riziculture irriguée, à 30° de latitude Sud (Taillebois J., communication personnelle - 1995).

les interactions "génotypes - conditions pédoclimatiques - modes de gestion des sols et des cultures".

Ce travail de recherche montre ainsi que les systèmes et leurs composantes bien maitrisées peuventêtre utilisés comme grille de sélection variétale efficace, en fonction des stratégies d'intensification des agriculteurs existantes ou possibles avec l'appui de la recherche [Séguy L., Bouzinac S. et al. 1989 (16)].

Références bibliographiques

1. BOUZINAC S., SÉGUY L., GALDEZ J. H. O., 1982

Fixation de la culture itinérante et maintien de la fertilité dans divers systèmes de culture manuels pratiqués par les petits agriculteurs de la région du Cocais-Maranhão. Nord-Est du Brésil 1979-1981

São Luis : EMAPA, Paris : IRAT, 1982,82P.,bibli.7réf.,tabl.,graph.

2. EMBRAPA, MINISTÉRIO DA AGRICULTURA - 1992

Recomendações técnicas para o cultivo do arroz em regiões favorecidas-124p., Brasília-1992.

3. GONZALEŚ L. A., UMALI D. L., 1985

Rice production systems - In international rice comission - Proceedings of the 16th session of the international rice comission - 10-14/06/1985 - Los baños, Laguna, Philippines - FAO - 1985 - Rome

4. ĤUSSON O., 1994 -

Rapport interne sur riziculture dans plaine des joncs - Vietnam.

5. IRAT - 1984

Les systèmes de culture du riz pluvial - 1984 - 98 p., ISBN2 - 90 -1987 - 08 - 4 - 1984 - Montpellier -France.

6. IRGA - 1991

In lavoura arrozeira, Porto Alegre, v. 44, nº 394, Jan/Fev - 1991.

7. KLUTHCOUSKI J. , PACHECO A. R., TEIXEIRA S. M., OLIVEIRA E. T. DE - 1991 -

Renovação de pastagens de cerrado com arroz - I - Sistema barreirão, Goiânia : EMBRAPA-CNPAF 20 p. (EMBRAPA-CNPAF - Documentos, 33).

8. MENDEZ DEL VILLAR P., 1994 -

Etude de la production du riz irrigué intensif au Brésil, en Colombie et en Equateur - Doc. interne CIRAD-CA - 48 p - Montpellier - 1994.

9. PACHECO A. R., KLUTHCOUSKI J., TEIXEIRA S. M., - 1990

Arroz-pasto: sistema alternativo a exploração agropecuária dos cerados - 125 p.- In Renapa - issn 0101-9716 - EMBRAPA-CNPAF -Goiânia - 1990.

10. SÉGUY L., NOTTEGHEM J. L., BOUZINAC S., 1981 -

Etudes des interactions solsvariétés de riz-Pyriculariose dans l'Ouest Cameroun - in, comptes rendus du symposium sur la résistance du riz à la Pyriculariose -18-21 mars 1981-IRAT-GERDAT - BP 5035 - Montpellier cedex -France.

11. SÉGUYL., MENDEZ SILVA J. J., BOUZINAC S., 1981

La fixation de l'agriculture itinérante et la lutte contre les mauvaises herbes dans les systèmes de production manuels des petits agriculteurs de la région du Cocais, Maranhão, Nord-Est du Brésil, 1979-1981 - EMAPA-IRAT, 1981, 99 p. - Doc. interne - CIRAD Montpellier - BP 5035 - France.

12. SÉGUY L., 1982

Perfecting farming systems models for upland rice manual cultivation an overview of upland rice research, upland rice workshop, Bouaké, 1982 - Los Banos: IRRI, 1984, pp. 545-548.

13. SÉGUY L., SILVA J. L. RIBEIRO DA, BOUZINAC S., 1982 -

L'amélioration variétale du riz pluvial dans les systèmes de production manuels pratiqués par les petits paysans de la région du Cocais au Maranhão, Nord-Est du Brésil, 1979-1988. São Luis : EMAPA, 51 p., 19 réf. 14. SÉGUY L. et al., 1984 -

Mise au point de modèles de systèmes de production en culture manuelle à base de riz pluvial utilisables par les petits producteurs de la région du Cocais au Maranhão, Nord-Est du Brésil, Etat du Maranhão. Agronomie Tropicale, 1984, vol. 37, m. 3, pp. 233-261, cartes, tabl., graph., bibl., 8 réf.

15. SÉGUY L. et al., 1984

Técnicas de preparo do solo -Efeitos na fertilidade, nas ervas daninhas e na conservação da água -26 p. - EMBRAPA-CNPAF - Circular técnica nº 17 - Goiânia - Goiás

16. SÉGUY L., BOUZINAC S., PACHECO A., KLUTHCOUSKI J., 1989 -

Des modes de gestion mécanisés des sols et des cultures aux techniques de gestion en semis direct, sans travail du sol, appliquées aux cerrados du centre-ouest brésilien. Doc. interne IRAT-EMBRAPA, 156 p. + photos - CIRAD Montpellier-BP5035-Montpellier cedex - France

17. SÉGUY L., BOUZINAC S. et al., 1989 -

Première évaluation de l'adoption par les agriculteurs du centreouest brésilien des technologies mises au point par la recherche franco-brésilienne. Doc. interne IRAT-MAE - 55 p. - BP 5035 -Montpellier cedex - France.

18. SÉGUY L., BOUZINAC S., PACHECO A., 1989 -

Une nouvelle technologie très lucrative et de moindre risque, adaptée aux cerrados humides du Mato Grosso; la succession annuelle soja de cycle court suivi desorgho, semé par avion un mois avant la récolte de soja, ou en semis direct au fur et à mesure de

la récolte de soja. Doc. interne IRAT - BP 5035 - Montpellier cedex-France.

19. SÉGUY L., BOUZINAC S., MOREIRA J. A. A., DE RAISSAC M., KLUTHCOUSKI J., 1989 -

Influence of soil management patterns on maintenance of fertility in the brazilian central plateau. International symposium on rice production on acid soils of the tropics Kandy, 1989/06/26-30. Goiânia: CNPAF-EMBRAPA, 1989, 12 p.

20. SÉĜUY L., BOUZINAC S., PACHECO A., 1989 -

Les principaux facteurs qui conditionnent la productivité du riz pluvial et sa sensibilité à la Pyriculariose sur sols rouges ferrallitiques d'altitude-Goiânia-Centre-Ouestbrésilien, 1989-Doc. interne IRAT, 41 p. - BP 5035 - Montpellier cedex - France.

21. SÉGUY L., BOUZINAC S., 1990 -

Gestion des sols et des cultures dans la zone des frontières agricoles des cerrados humides du Centre-Ouest brésilien. Synthèse actualisée 1986-1990 et highlights 1990. Doc. interne - BP 5035 - Montpellier cedex - France.

22. SÉGUY L., BOUZINAC S., YOKOYAMA L., 1990 -

Évaluation de l'adoption par les agriculteurs du Centre-Ouest brésilien des technologies mises au point par la recherche franco-brésilienne. Seconde phase 1989-1990, 118 p. - Doc. interne - BP 5035-Montpellier cedex-France.

23. SÉGUY L., BOUZINAC S., 1990 -

Larechercheappliquée auservice du développement régional - Brésil - 1990 - Doc. I - p. 6-70, rapport interne CIRAD-CA

24. SÉGUY L., et al., 1991 -

Gestion des sols et des cultures dans les zones de frontières agricoles des cerrados humides du Centre-Ouest-Brésil-1991-p. 107, doc. interne CIRAD-CA.

25. SÉGUY L., BOUZINAC S., PIERI C., 1991 -

An approach to the development of sustainable farming systems; in: evaluation for sustainable land management in the developing world. Technical papers. ISBRAM Proceedings nº 12, vol. II, Bangkok, Thailand 1991.

26. SEGUY L., et al., 1992 -

Gestion des sols et des cultures dans les zones de frontières agricoles des cerrados humides du Centre-Ouest brésilien. Tome I et II (p. 65, p. 34), 1992.

27. SEGUY L., BOUZINAC S., et al., 1993 -

Gestion des sols et des cultures dans les zones de frontières agricoles des cerrados humides du Centre-Ouest - Année agricole 1992-93 - Doc. interne, 83 p. - CIRAD-CA-BP 5035 - Montpellier cedex-France.

28. SÉGUY L., BOUZINAC S., et al., 1994 -

Gestion des sols et des cultures dans les zones de frontières agricoles des cerrados humides du Centre-Ouest-Année agricole 1993-94. Doc. interne - 256 p. - CIRAD-CA-BP 5035-Montpellier cedex - France.

29. SÉGUY L., BOUZINAC S., CHARPENTIER H., MICHEL-LON R., octobre 1994 -

Contribution à l'étude et à la mise au point des systèmes de culture en milieu réel : - Petit guide d'initiation à la méthode de "création-diffusion" de technologies en milieu réel. Résumés de quelques exemples significatifs d'application. Doc. CIRAD, 191 p. + photos. BP 5035 Montpellier cedex - France.

30. SÉGUY L., BOUZINAC S., 1994 -

Fronteras agricolas del oeste de Brasil - in ; agriculture et developpement p. 54-57 diciembre 1994 - CIRAD-CA - BP 5035-Montpellier cedex-France.

31. STEINMETZS., REYNIERS F. N., FOREST F., 1988 -

Caracterização do regime pluviométrico e do balanço hídrico do arroz de sequeiro em distintas regiões produtoras do Brasil - vol I - GGP-EMBRAPA-CNPAF - Documentos 23, 1988 - CP 174 - Goiânia - Goiás - Brasil.

32. SURAPONG SARKA-RUNG., ZEIGLER R. S., 1989 -

Developing rice varieties for sustainable cropping system for high rainfall acid upland soils of tropical America. in; "International symposium of rice production on acid soils of the tropics", Kandy, Srilanka - 26-30/06/89

33. TEIXEIRAS. M., ROBISON D., ALBUQUERQUE J. M., 1991-

Agricultura de subsistência na produção de arroz - Experiência no Maranhão - 29 p., ISSN 0101-9716-1991-EMBRAPA-CNPAF-CP 174 - Goiânia - Goiás - Brasil.

34. WINSLOW M. D., 1992 -

Silicon, disease resistance, and yield of rice génotypes under upland cultural conditions in cropscience. Vol. 32, nº 5 - 1992.